Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Efficient infection of primitive hematopoietic stem cells by modified adenovirus

Abstract

Almost all studies of adenoviral vector-mediated gene transfer have made use of the adenovirus type 5 (Ad5). Unfortunately, Ad5 has been ineffective at infecting hematopoietic progenitor cells (HPC). Chimeric Ad5/F35 vectors that have been engineered to substitute the shorter-shafted fiber protein from Ad35 can efficiently infect committed hematopoietic cells and we now show highly effective gene transfer to primitive progenitor subsets. An Ad5GFP and Ad5/F35GFP vector was added to CD34+ and CD34lineage (lin) HPC. Only 5–20% of CD34+ and CD34lin cells expressed GFP after Ad5 exposure. In contrast, with the Ad5/F35 vector, 30–70% of the CD34+, 50–70% of the CD34lin and up to 60% of the CD38 HPC expressed GFP and there was little evident cellular toxicity. Because of these improved results, we also analyzed the ability of Ad5/F35 virus to infect the hoechst negative ‘side population’ (SP) of marrow cells, which appear to be among the very earliest multipotent HPC. Between 51% and 80% of marrow SP cells expressed GFP. The infected populations retained their ability to form colonies in two short-term culture systems, with no loss of viability. We also studied the transfer and expression of immunomodulatory genes, CD40L (cell surface expression) and interleukin-2 (secreted). Both were expressed at immunomodulatory levels for >5 days. The ability of Ad5/F35 to deliver transgenes to primitive HPC with high efficiency and low toxicity in the absence of growth factors provides an improved means of studying the consequences of transient gene expression in these cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection (published erratum appears in Mol Cell Biol 1992 Jan; 12(1): 433) Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dao MA et al. Engraftment and retroviral marking of CD34+ and CD34+CD38− human hematopoietic progenitors assessed in immune-deficient mice Blood 1998 91: 1243–1255

    CAS  PubMed  Google Scholar 

  3. Larochelle A et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy Nat Med 1996 2: 1329–1337

    Article  CAS  PubMed  Google Scholar 

  4. Lu M et al. Retrovirus-mediated gene expression in hematopoietic cells correlates inversely with growth factor stimulation Human Gene Ther 1996 7: 2263–2271

    Article  CAS  Google Scholar 

  5. Case SS et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors Proc Natl Acad Sci USA 1999 96: 2988–2993

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen L et al. Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources (see comments) J Clin Invest 1996 98: 2539–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wroblewski JM et al. Selective elimination (purging) of contaminating malignant cells from hematopoietic stem cell autografts using recombinant adenovirus Cancer Gene Ther 1996 3: 257–264

    CAS  PubMed  Google Scholar 

  8. MacKenzie KL et al. Adenoviral vector-mediated gene transfer to primitive human hematopoietic progenitor cells: assessment of transduction and toxicity in long-term culture Blood 2000 96: 100–108

    CAS  PubMed  Google Scholar 

  9. Rebel VI et al. Maturation and lineage-specific expression of the coxsackie and adenovirus receptor in hematopoietic cells Stem Cells 2000 18: 176–182

    Article  CAS  PubMed  Google Scholar 

  10. Roy V, Verfaillie CM . Expression and function of cell adhesion molecules on fetal liver, cord blood and bone marrow hematopoietic progenitors: implications for anatomical localization and developmental stage specific regulation of hematopoiesis Exp Hematol 1999 27: 302–312

    Article  CAS  PubMed  Google Scholar 

  11. Thoma SJ, Lamping CP, Ziegler BL . Phenotype analysis of hematopoietic CD34+ cell populations derived from human umbilical cord blood using flow cytometry and cDNA-polymerase chain reaction Blood 1994 83: 2103–2114

    CAS  PubMed  Google Scholar 

  12. Shayakhmetov DM et al. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector J Virol 2000 74: 2567–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Defer C et al. Human adenovirus-host cell interactions: comparative study with members of subgroups B and C J Virol 1990 64: 3661–3673

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Roelvink PW et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F J Virol 1998 72: 7909–7915

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Goodell MA et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species Nat Med 1997 3: 1337–1345

    Article  CAS  PubMed  Google Scholar 

  16. Clarke SR . The critical role of CD40/CD40L in the CD4-dependent generation of CD8+ T cell immunity J Leukoc Biol 2000 67: 607–614

    Article  CAS  PubMed  Google Scholar 

  17. Diehl L et al. The role of CD40 in peripheral T cell tolerance and immunity (in process citation) J Mol Med 2000 78: 363–371

    Article  CAS  PubMed  Google Scholar 

  18. Blanchard D et al. Role of CD40 antigen and interleukin-2 in T cell-dependent human B lymphocyte growth Eur J Immunol 1994 24: 330–335

    Article  CAS  PubMed  Google Scholar 

  19. van Kooten C, Banchereau J . Functions of CD40 on B cells, dendritic cells and other cells Curr Opin Immunol 1997 9: 330–337

    Article  CAS  PubMed  Google Scholar 

  20. Dai Z, Konieczny BT, Lakkis FG . The dual role of IL-2 in the generation and maintenance of CD8+ memory T cells J Immunol 2000 165: 3031–3036

    Article  CAS  PubMed  Google Scholar 

  21. Toribio ML et al. Interleukin-2-dependent autocrine proliferation in T-cell development Nature 1989 342: 82–85

    Article  CAS  PubMed  Google Scholar 

  22. Smith CA et al. Production of genetically modified Epstein–Barr virus-specific cytotoxic T cells for adoptive transfer to patients at high risk of EBC-associated lymphoproliferative disease J Hematother 1995 4: 73–79

    Article  CAS  PubMed  Google Scholar 

  23. Stewart AK et al. Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase I clinical trial Gene Therapy 1999 6: 350–363

    Article  CAS  PubMed  Google Scholar 

  24. Lotze MT et al. Interleukin-2: developing additional cytokine gene therapies using fibroblasts or dendritic cells to enhance tumor immunity Cancer J Sci Am 2000 6 (Suppl. 1): S61–S66

    Google Scholar 

  25. Bowman L et al. IL-2 adenovector-transduced autologous tumor cells induced antitumor immune responses in patients with neuroblastoma Blood 1998 92: 1941–1949

    CAS  PubMed  Google Scholar 

  26. Sobol RE et al. Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a phase I study Clin Cancer Res 1999 5: 2359–2365

    CAS  PubMed  Google Scholar 

  27. Bergelson JM et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  28. Wickham TJ et al. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  29. Mentel R et al. Adenovirus-receptor interaction with human lymphocytes J Med Virol 1997 51: 252–257

    Article  CAS  PubMed  Google Scholar 

  30. Huang S, Endo RI, Nemerow GR . Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery J Virol 1995 69: 2257–2263

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cantwell MJ et al. Adenovirus vector infection of chronic lymphocytic leukemia B cells Blood 1996 88: 4676–4683

    CAS  PubMed  Google Scholar 

  32. Huang MR et al. Efficient adenovirus-mediated gene transduction of normal and leukemic hematopoietic cells Gene Therapy 1997 4: 1093–1099

    Article  CAS  PubMed  Google Scholar 

  33. Fan X et al. Efficient adenoviral vector transduction of human hematopoietic SCID-repopulating and long-term culture-initiating cells Hum Gene Ther 2000 11: 1313–1327

    Article  CAS  PubMed  Google Scholar 

  34. Crystal RG . Transfer of genes to humans: early lessons and obstacles to success Science 1995 270: 404–410

    Article  CAS  PubMed  Google Scholar 

  35. Byk T et al. Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells Hum Gene Ther 1998 9: 2493–2502

    Article  CAS  PubMed  Google Scholar 

  36. Smith JS et al. Redirected infection of directly biotinylated recombinant adenovirus vectors through cell surface receptors and antigens Proc Natl Acad Sci USA 1999 96: 8855–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzalez R et al. Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus demonstrates preferential gene transfer in myeloma cells Hum Gene Ther 1999 10: 2709–2717

    Article  CAS  PubMed  Google Scholar 

  38. Segerman A, Mei YF, Wadell G . Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines J Virol 2000 74: 1457–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krasnykh VN et al. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism J Virol 1996 70: 6839–6846

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gall J et al. Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes J Virol 1996 70: 2116–2123

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zabner J et al. A chimeric type 2 adenovirus vector with a type 17 fiber enhances gene transfer to human airway epithelia J Virol 1999 73: 8689–8695

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stevenson SC et al. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein J Virol 1997 71: 4782–4790

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hao QL et al. A functional comparison of CD34+CD38− cells in cord blood and bone marrow Blood 1995 86: 3745–3753

    CAS  PubMed  Google Scholar 

  44. Goodell MA et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo J Exp Med 1996 183: 1797–1806

    Article  CAS  PubMed  Google Scholar 

  45. Gimmi CD et al. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation Proc Natl Acad Sci USA 1993 90: 6586–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cardoso AA et al. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen Blood 1996 88: 41–48

    CAS  PubMed  Google Scholar 

  47. Yotnda P et al. Analysis of T-cell defects in the specific immune response against acute lymphoblastic leukemia cells Exp Hematol 1999 27: 1375–1383

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt-Wolf IG et al. Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma Br J Cancer 1999 81: 1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Noelle RJ et al. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells Proc Natl Acad Sci USA 1992 89: 6550–6554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nonoyama S et al. Mutations of the CD40 ligand gene in 13 Japanese patients with X-linked hyper-IgM syndrome Hum Genet 1997 99: 624–627

    Article  CAS  PubMed  Google Scholar 

  51. DiSanto JP et al. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM (see comments) Nature 1993 361: 541–543

    Article  CAS  PubMed  Google Scholar 

  52. Wierda WG et al. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia Blood 2000 96: 2917–2924

    CAS  PubMed  Google Scholar 

  53. Dilloo D et al. CD40 ligand induces an antileukemia immune response in vivo Blood 1997 90: 1927–1933

    CAS  PubMed  Google Scholar 

  54. Schattner EJ . Cd40 ligand in CLL pathogenesis and therapy Leuk Lymphoma 2000 37: 461–472

    Article  CAS  PubMed  Google Scholar 

  55. Brown MP et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice Nat Med 1998 4: 1253–1260

    Article  CAS  PubMed  Google Scholar 

  56. Davis AR, Meyers K, Wilson JM . High throughput method for creating and screening recombinant adenoviruses Gene Therapy 1998 5: 1148–1152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Tatiana Gotsolva for her help with flow cytometric analysis, and Mei Zhuyong for her technical help with the ELISA assays. This work was supported by NIH grant number RO1 CA78792.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yotnda, P., Onishi, H., Heslop, H. et al. Efficient infection of primitive hematopoietic stem cells by modified adenovirus. Gene Ther 8, 930–937 (2001). https://doi.org/10.1038/sj.gt.3301488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301488

Keywords

This article is cited by

Search

Quick links