Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Receptor targeting of adeno-associated virus vectors

Abstract

Adeno-associated virus (AAV) is a promising vector for human somatic gene therapy. However, its broad host range is a disadvantage for in vivo gene therapy, because it does not allow the selective tissue- or organ-restricted transduction required to enhance the safety and efficiency of the gene transfer. Therefore, increasing efforts are being made to target AAV-2-based vectors to specific receptors. The studies summarized in this review show that it is possible to target AAV-2 to a specific cell. So far, the most promising approach is the genetic modification of the viral capsid. However, the currently available AAV-2 targeting vectors need to be improved with regard to the elimination of the wild-type AAV-2 tropism and the improvement of infectious titers. The creation of highly efficient AAV-2 targeting vectors will also require a better understanding of the transmembrane and intracellular processing of this virus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Blacklow NR et al. Epidemiology of adenovirus-associated virus infection in a nursery population. Am J Epidemiol 1968; 88: 368–378.

    Article  CAS  PubMed  Google Scholar 

  2. Blacklow NR et al. A seroepidemiologic study of adenovirus-associated virus infection in infants and children. Am J Epidemiol 1971; 94: 359–366.

    Article  CAS  PubMed  Google Scholar 

  3. Blacklow NR . Adeno-associated virus of humans. In: Pettison J (eds.) Parvovirus Hum Dis 1988; 165–174.

  4. Hermonat PL . The adeno-associated virus Rep78 gene inhibits cellular transformation induced by bovine papillomavirus. Virology 1989; 172: 253–261.

    Article  CAS  PubMed  Google Scholar 

  5. Mayor HD, Houlditch GS, Mumford DM . Influence of adeno-associated satellite virus on adenovirus-induced tumours in hamsters. Nat New Biol 1973; 241: 44–46.

    Article  CAS  PubMed  Google Scholar 

  6. Khleif SN, Myers T, Carter BJ, Trempe JP . Inhibition of cellular transformation by the adeno-associated virus rep gene. Virology 1991; 181: 738–741.

    Article  CAS  PubMed  Google Scholar 

  7. Carter PJ, Samulski RJ . Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med 2000; 6: 17–27.

    CAS  PubMed  Google Scholar 

  8. Kotin RM et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Samulski RJ et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10: 3941–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monahan PE, Samulski RJ . Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000; 6: 433–440.

    Article  CAS  PubMed  Google Scholar 

  11. Tal J . Adeno-associated virus-based vectors in gene therapy. J Biomed Sci 2000; 7: 279–291.

    Article  CAS  PubMed  Google Scholar 

  12. Rivadeneira ED et al. Sites of recombinant adeno-associated virus integration. Int J Oncol 1998; 12: 805–810.

    CAS  PubMed  Google Scholar 

  13. Balague C, Kalla M, Zhang WW . Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol 1997; 71: 3299–3306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rabinowitz JE, Samulski RJ . Building a better vector: the manipulation of AAV virions. Virology 2000; 278: 301–308.

    Article  CAS  PubMed  Google Scholar 

  15. Hermonat PL et al. Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants. J Virol 1984; 51: 329–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smuda JW, Carter BJ . Adeno-associated viruses having nonsense mutations in the capsid genes: growth in mammalian cells containing an inducible amber suppressor. Virology 1991; 184: 310–318.

    Article  CAS  PubMed  Google Scholar 

  17. Tratschin JD, Miller IL, Carter BJ . Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. J Virol 1984; 51: 611–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wistuba A, Weger S, Kern A, Kleinschmidt JA . Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins. J Virol 1995; 69: 5311–5319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wistuba A et al. Subcellular compartmentalization of adeno-associated virus type 2 assembly. J Virol 1997; 71: 1341–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoque M et al. Nuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation. J Virol 1999; 73: 7912–7915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruffing M, Zentgraf H, Kleinschmidt JA . Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells. J Virol 1992; 66: 6922–6930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dubielzig R et al. Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes. J Virol 1999; 73: 8989–8998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  24. Hermens WT et al. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 1999; 10: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  25. Girod A et al. Genetic capsid modifications allow efficient re-targeting of adeno- associated virus type 2. Nat Med 1999; 5: 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  26. Grimm D, Kleinschmidt JA . Progress in adeno-associated virus type 2 vector production: promises and prospects for clinical use. Hum Gene Ther 1999; 10: 2445–2450.

    Article  CAS  PubMed  Google Scholar 

  27. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferrari FK, Xiao X, McCarty D, Samulski RJ . New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors. Nat Med 1997; 3: 1295–1297.

    Article  CAS  PubMed  Google Scholar 

  29. Chiorini JA et al. High-efficiency transfer of the T cell co-stimulatory molecule B7-2 to lymphoid cells using high-titer recombinant adeno-associated virus vectors. Hum Gene Ther 1995; 6: 1531–1541.

    Article  CAS  PubMed  Google Scholar 

  30. Summerford C, Samulski RJ . Viral receptors and vector purification: new approaches for generating clinical-grade reagents. Nat Med 1999; 5: 587–588.

    Article  CAS  PubMed  Google Scholar 

  31. Zolotukhin S et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 1999; 6: 973–985.

    Article  CAS  PubMed  Google Scholar 

  32. Xie Q et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 10405–10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kronenberg S, Kleinschmidt JA, Bottcher B . Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids. EMBO Rep 2001; 2: 997–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsao J et al. The three-dimensional structure of canine parvovirus and its functional implications. Science 1991; 251: 1456–1464.

    Article  CAS  PubMed  Google Scholar 

  35. Agbandje M et al. Structure determination of feline panleukopenia virus empty particles. Proteins 1993; 16: 155–171.

    Article  CAS  PubMed  Google Scholar 

  36. Agbandje-McKenna M et al. Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure 1998; 6: 1369–1381.

    Article  CAS  PubMed  Google Scholar 

  37. Agbandje M et al. The structure of human parvovirus B19 at 8 A resolution. Virology 1994; 203: 106–115.

    Article  CAS  PubMed  Google Scholar 

  38. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu P et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 2000; 74: 8635–8647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rabinowitz JE, Xiao W, Samulski RJ . Insertional mutagenesis of AAV2 capsid and the production of recombinant virus. Virology 1999; 265: 274–285.

    Article  CAS  PubMed  Google Scholar 

  41. Bartlett JS, Wilcher R, Samulski RJ . Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 2000; 74: 2777–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qing K et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5: 71–77.

    Article  CAS  PubMed  Google Scholar 

  43. Sanlioglu S et al. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol 2000; 74: 9184–9196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duan D et al. Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol 1999; 73: 10371–10376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang K, Huang S, Kapoor-Munshi A, Nemerow G . Adenovirus internalization and infection require dynamin. J Virol 1998; 72: 3455–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marks B et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 2001; 410: 231–235.

    Article  CAS  PubMed  Google Scholar 

  47. Sever S, Damke H, Schmid SL . Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol 2000; 150: 1137–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Douar AM, Poulard K, Stockholm D, Danos O . Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75: 1824–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marsh M, Helenius A . Virus entry into animal cells. Adv Virus Res 1989; 36: 107–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Girod A et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 2002; 83: 973–978.

    Article  CAS  PubMed  Google Scholar 

  51. Zadori Z et al. A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell 2001; 1: 291–302.

    Article  CAS  PubMed  Google Scholar 

  52. Seisenberger G et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001; 294: 1929–1932.

    Article  CAS  PubMed  Google Scholar 

  53. Samulski RJ, Berns KI, Tan M, Muzyczka N . Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982; 79: 2077–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chiorini JA et al. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997; 71: 6823–6833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muramatsu S, Mizukami H, Young NS, Brown KE . Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology 1996; 221: 208–217.

    Article  CAS  PubMed  Google Scholar 

  56. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72: 309–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiorini JA, Kim F, Yang L, Kotin RM . Cloning and characterization of adeno-associated virus type 5. J Virol 1999; 73: 1309–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hildinger M et al. Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer. J Virol 2001; 75: 6199–6203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Halbert CL et al. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol 2000; 74: 1524–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kaludov N et al. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 2001; 75: 6884–6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bantel-Schaal U, Delius H, Schmidt R, zur Hausen H . Human adeno-associated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J Virol 1999; 73: 939–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seiler M et al. AAV5 and AAV6 mediate gene transfer to human airway epithelia via different receptors. Mol. Ther. 2002; 5: S40, abstract No. 117.

  63. Rabinowitz JE et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xiao W et al. Gene therapy vectors based on adeno-associated virus type 1. J Virol 1999; 73: 3994–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Handa A et al. Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol 2000; 81: 2077–2084.

    Article  CAS  PubMed  Google Scholar 

  66. Zabner J et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 2000; 74: 3852–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 2001; 75: 6615–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Davidson BL et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA 2000; 97: 3428–3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cosset FL, Russell SJ . Targeting retrovirus entry. Gene Ther 1996; 3: 946–956.

    CAS  PubMed  Google Scholar 

  70. Miller AD . Cell-surface receptors for retroviruses and implications for gene transfer. Proc Natl Acad Sci USA 1996; 93: 11407–11413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Walter W, Stein U . Cell type specific and inducible promotors for vectors in gene therapy as an approach for cell targeting. J Mol Med 1996; 74: 379–392.

    Article  Google Scholar 

  72. Grifman M et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 2001; 3: 964–975.

    Article  CAS  PubMed  Google Scholar 

  73. Shi W, Arnold GS, Bartlett JS . Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther 2001; 12: 1697–1711.

    Article  CAS  PubMed  Google Scholar 

  74. Yang Q et al. Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum Gene Ther 1998; 9: 1929–1937.

    Article  CAS  PubMed  Google Scholar 

  75. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ . Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'gamma)2 antibody. Nat Biotechnol 1999; 17: 181–186.

    Article  CAS  PubMed  Google Scholar 

  76. Nicklin SA et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001; 4: 174–181.

    Article  CAS  PubMed  Google Scholar 

  77. Ried MU et al. Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J Virol 2002; 76: 4559–4566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ziady AG et al. Gene transfer into hepatoma cell lines via the serpin enzyme complex receptor. Am J Physiol 1997; 273G: 545–552.

    Google Scholar 

  79. Chapman MS, Rossmann MG . Structure, sequence, and function correlations among parvoviruses. Virology 1993; 194: 491–508.

    Article  CAS  PubMed  Google Scholar 

  80. Weichert WS et al. Assaying for structural variation in the parvovirus capsid and its role in infection. Virology 1998; 250: 106–117.

    Article  CAS  PubMed  Google Scholar 

  81. Aumailley M et al. Identification of the Arg–Gly–Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett 1990; 262: 82–86.

    Article  CAS  PubMed  Google Scholar 

  82. White JM . Integrins as virus receptors. Curr Biol 1993; 3: 596–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grimm D et al. Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2. Gene Ther 1999; 6: 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  84. Ohno K et al. Cell-specific targeting of Sindbis virus vectors displaying IgG-binding domains of protein A. Nat Biotechnol 1997; 15: 763–767.

    Article  CAS  PubMed  Google Scholar 

  85. Sinha P, Sengupta J, Ray PK . Functional mimicry of protein A of Staphylococcus aureus by a proteolytically cleaved fragment. Biochem Biophys Res Commun 1999; 260: 111–116.

    Article  CAS  PubMed  Google Scholar 

  86. Perabo L et al. In vitro evolution of receptor specific gene vectors: the adeno-associated virus display, submitted.

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 455), the Wilhelm Sander-Stiftung and the Bayerische Forschungsstiftung. We thank all members of the laboratory for many inspiring discussions and help during the work presented in this review, and Dr Susan King for critically reading the manuscript. The authors apologize to investigators whose work was not cited owing to limited space.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büning, H., Ried, M., Perabo, L. et al. Receptor targeting of adeno-associated virus vectors. Gene Ther 10, 1142–1151 (2003). https://doi.org/10.1038/sj.gt.3301976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301976

Keywords

This article is cited by

Search

Quick links