Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Branched oligonucleotides induce in vivo gene conversion of a mutated EGFP reporter

Abstract

Branched oligonucleotides (b-oligonucleotides) based on a novel branching monomer were used for site-specific sequence alteration in vivo. With a stable integrated mutated enhanced green fluorescent protein (EGFP) template in Chinese hamster ovary cells, up to 0.1% EGFP-positive cells were counted after transfection with b-oligonucleotides. The presence of EGFP protein in converted cells was demonstrated by anti-EGFP immunocytochemistry. Genomic sequencing of converted cells showed in 40% of the analysed clones the corrected wild-type codon, while 9.3% of the sequences showed a corrected wild-type sequence and an additional collateral mutation. Despite the stable corrected genomic locus, converted cells entered selective apoptosis after 3–6 days. The cell line Irs-1 that is deficient in the homologous recombination pathway showed a reduced frequency of b-oligonucleotide-induced site-specific sequence conversion. The reduced conversion rates in the mutant cell line could be partly rescued by complementation with XRCC2 cDNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Capecchi MR . Altering the genome by homologous recombination. Science 1989; 244: 1288–1292.

    Article  CAS  PubMed  Google Scholar 

  2. Lai LW, Lien YH . Homologous recombination based gene therapy. Exp Nephrol 1999; 7: 11–14.

    Article  CAS  PubMed  Google Scholar 

  3. Morrison C, Takeda S . Genetic analysis of homologous DNA recombination in vertebrate somatic cells. Int J Biochem Cell Biol 2000; 32: 817–831.

    Article  CAS  PubMed  Google Scholar 

  4. Sonoda E et al. Homologous DNA recombination in vertebrate cells. Proc Natl Acad Sci USA 2001; 98: 8388–8394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goncz KK et al. Expression of DeltaF508 CFTR in normal mouse lung after site-specific modification of CFTR sequences by SFHR. Gene Therapy 2001; 8: 961–965.

    Article  CAS  PubMed  Google Scholar 

  6. Gamper HB et al. The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res 2000; 28: 4332–4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kapsa RM et al. Targeted gene correction in the mdx mouse using short DNA fragments: towards application with bone marrow-derived cells for autologous remodeling of dystrophic muscle. Gene Therapy 2002; 9: 695–699.

    Article  CAS  PubMed  Google Scholar 

  8. Thorpe P, Stevenson BJ, Porteous DJ . Optimising gene repair strategies in cell culture. Gene Therapy 2002; 9: 700–702.

    Article  CAS  PubMed  Google Scholar 

  9. van der SG et al. Persistent failures in gene repair. Nat Biotechnol 2001; 19: 305–306.

    Article  Google Scholar 

  10. Barre FX et al. Unambiguous demonstration of triple-helix-directed gene modification. Proc Natl Acad Sci USA 2000; 97: 3084–3088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gunther EJ, Havre PA, Gasparro FP, Glazer PM . Triplex-mediated, in vitro targeting of psoralen photoadducts within the genome of a transgenic mouse. Photochem Photobiol 1996; 63: 207–212.

    Article  CAS  PubMed  Google Scholar 

  12. Luo Z, Macris MA, Faruqi AF, Glazer PM . High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc Natl Acad Sci USA 2000; 97: 9003–9008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oh DH, Hanawalt PC . Binding and photoreactivity of psoralen linked to triple helix-forming oligonucleotides. Photochem Photobiol 2000; 72: 298–307.

    CAS  PubMed  Google Scholar 

  14. Wang G, Seidman MM, Glazer PM . Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 1996; 271: 802–805.

    Article  CAS  PubMed  Google Scholar 

  15. Gunther EJ, Havre PA, Gasparro FP, Glazer PM . Triplex-mediated, in vitro targeting of psoralen photoadducts within the genome of a transgenic mouse. Photochem Photobiol 1996; 63: 207–212.

    Article  CAS  PubMed  Google Scholar 

  16. Luo Z, Macris MA, Faruqi AF, Glazer PM . High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells. Proc Natl Acad Sci USA 2000; 97: 9003–9008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oh DH, Hanawalt PC . Binding and photoreactivity of psoralen linked to triple helix-forming oligonucleotides. Photochem Photobiol 2000; 72: 298–307.

    CAS  PubMed  Google Scholar 

  18. Wang G, Seidman MM, Glazer PM . Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 1996; 271: 802–805.

    Article  CAS  PubMed  Google Scholar 

  19. Chan PP et al. Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide. J Biol Chem 1999; 274: 11541–11548.

    Article  CAS  PubMed  Google Scholar 

  20. Datta HJ et al. Triplex-induced recombination in human cell-free extracts: Dependence on XPA and HsRad 51. J Biol Chem 2001; 276: 18018–18023.

    Article  CAS  PubMed  Google Scholar 

  21. Faruqi AF et al. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 2000; 20: 990–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knauert MP, Glazer PM . Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum Mol Genet 2001; 10: 2243–2251.

    Article  CAS  PubMed  Google Scholar 

  23. Strobel SA, Dervan PB . Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 1990; 249: 73–75.

    Article  CAS  PubMed  Google Scholar 

  24. Amosova OA, Fresco JR . A search for base analogs to enhance third-strand binding to ‘inverted’ target base pairs of triplexes in the pyrimidine/parallel motif. Nucleic Acids Res 1999; 27: 4632–4635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gowers DM, Bijapur J, Brown T, Fox KR . DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Biochemistry 1999; 38: 13747–13758.

    Article  CAS  PubMed  Google Scholar 

  26. Gowers DM, Fox KR . Towards mixed sequence recognition by triple helix formation. Nucleic Acids Res 1999; 27: 1569–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gowers DM, Bijapur J, Brown T, Fox KR . DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Biochemistry 1999; 38: 13747–13758.

    Article  CAS  PubMed  Google Scholar 

  28. Gowers DM, Fox KR . Towards mixed sequence recognition by triple helix formation. Nucleic Acids Res 1999; 27: 1569–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sollogoub M et al. Stable DNA triple helix formation using oligonucleotides containing 2′-aminoethoxy,5-propargylamino-U. Biochemistry 2002; 41: 7224–7231.

    Article  CAS  PubMed  Google Scholar 

  30. Dekker M, Brouwers C, Te RH . Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res 2003; 31: E27.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thorpe PH, Stevenson BJ, Porteous DJ . Functional correction of episomal mutations with short DNA fragments and RNA–DNA oligonucleotides. J Gene Med 2002; 4: 195–204.

    Article  CAS  PubMed  Google Scholar 

  32. Shinohara A et al. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat Genet 1993; 4: 239–243.

    Article  CAS  PubMed  Google Scholar 

  33. Shinohara A, Ogawa T . Rad51/RecA protein families and the associated proteins in eukaryotes. Mutat Res 1999; 435: 13–21.

    Article  CAS  PubMed  Google Scholar 

  34. Mazin AV, Zaitseva E, Sung P, Kowalczykowski SC . Tailed duplex DNA is the preferred substrate for Rad51 protein-mediated homologous pairing. EMBO J 2000; 19: 1148–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Namsaraev EA, Berg P . Branch migration during Rad51-promoted strand exchange proceeds in either direction. Proc Natl Acad Sci USA 1998; 95: 10477–10481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Collins AR . Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat Res 1993; 293: 99–118.

    Article  CAS  PubMed  Google Scholar 

  37. Jones NJ, Cox R, Thacker J . Isolation and cross-sensitivity of X-ray-sensitive mutants of V79-4 hamster cells. Mutat Res 1987; 183: 279–286.

    CAS  PubMed  Google Scholar 

  38. Thacker J et al. Localization to chromosome 7q36.1 of the human XRCC2 gene, determining sensitivity to DNA-damaging agents. Hum Mol Genet 1995; 4: 113–120.

    Article  CAS  PubMed  Google Scholar 

  39. O'Regan P, Wilson C, Townsend S, Thacker J . XRCC2 is a nuclear RAD51-like protein required for damage-dependent RAD51 focus formation without the need for ATP binding. J Biol Chem 2001; 276: 22148–22153.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson RD, Liu N, Jasin M . Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 1999; 401: 397–399.

    CAS  PubMed  Google Scholar 

  41. Liu L et al. Strand bias in targeted gene repair is influenced by transcriptional activity. Mol Cell Biol 2002; 22: 3852–3863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuzminov A . DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci USA 2001; 98: 8461–8468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Papucci L et al. Phosphodiester oligonucleotides inhibit mitosis and trigger apoptosis by a non-antisense, p53-mediated mechanism. Antisense Nucleic Acid Drug Dev 2002; 12: 21–31.

    Article  CAS  PubMed  Google Scholar 

  44. Nur-E-Kamal et al. Single-stranded DNA induces ataxia telangiectasia mutant (ATM)/p53-dependent DNA damage and apoptotic signals. J Biol Chem 2003; 278: 12475–12481.

    Article  CAS  PubMed  Google Scholar 

  45. Khanna KK, Jackson SP . DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247–254.

    Article  CAS  PubMed  Google Scholar 

  46. Kuzminov A . DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci USA 2001; 98: 8461–8468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Machon O et al. Forebrain-specific promoter/enhancer D6 derived from the mouse Dach1 gene controls expression in neural stem cells. Neuroscience 2002; 112: 951–966.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tom brown for his support with design and synthesis of oligonucleotides. We thank Bengt Norden, Erling Seeberg, Orlando Scharer, Keith Fox and Peter Nielsen for helpful discussions. We are especially grateful to Rolf Seljelid without whose encouragement and support the project would not have been possible. We are grateful to Gøril Olsen and Markus Randøl for excellent technical help. This research has been funded by EU Grant QLK3-CT-2000-00634, the Norwegian Research Council and the Norwegian Cancer Society.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, P., McKeen, C. & Krauss, S. Branched oligonucleotides induce in vivo gene conversion of a mutated EGFP reporter. Gene Ther 10, 1830–1840 (2003). https://doi.org/10.1038/sj.gt.3302079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302079

Keywords

This article is cited by

Search

Quick links