Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant, E6/E7-transgenic mice

Abstract

Despite promising preclinical results of various therapeutic anticancer immunization strategies, these approaches may not be effective enough to eradicate tumors in cancer patients. While most animal models are based on fast-growing transplantable tumors, malignancies in, for example, cervical cancer patients in general develop much more slowly, which may lead to immune suppression and/or immune tolerance. As a consequence, the immunomodulating signal of any therapeutic immunization regimen should be sufficiently potent to overcome this immunocompromised condition. In previous studies, we demonstrated that an experimental vaccine against human papillomavirus (HPV)-induced cervical cancer, based on Semliki Forest virus (SFV), induces robust HPV-specific cellular immune responses in mice. Now we studied whether this strategy is potent enough to also prime a cellular immune response in immune-tolerant HPV transgenic mice, in which CTL activity cannot be induced using protein or DNA vaccines. We demonstrate that, depending on the route of immunization, SFV-expressing HPV16 E6 and E7 indeed has the capacity to induce HPV16 E7-specific cytotoxic T cells in HPV-transgenic mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Walboomers JM et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 89: 12–19.

    Article  Google Scholar 

  2. Munger K, Howley PM . Human papillomavirus immortalization and transformation functions. Virus Res 2002; 89: 213–228.

    Article  CAS  PubMed  Google Scholar 

  3. Eiben GL, Velders MP, Kast WM . The cell-mediated immune response to human papillomavirus-induced cervical cancer: implications for immunotherapy. Adv Cancer Res 2002; 86: 113–148.

    Article  CAS  PubMed  Google Scholar 

  4. Bosch FX et al. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55: 244–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Evans EM, Man S, Evans AS, Borysiewicz LK . Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res 1997; 57: 2943–2950.

    CAS  PubMed  Google Scholar 

  6. Ressing ME et al. Occasional memory cytotoxic T-cell responses of patients with human papillomavirus type 16-positive cervical lesions against a human leukocyte antigen-A *0201-restricted E7-encoded epitope. Cancer Res 1996; 56: 582–588.

    CAS  PubMed  Google Scholar 

  7. Steinman RM, Nussenzweig MC . Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002; 99: 351–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daemen T, Regts J, Holtrop M, Wilschut J . Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene Therapy 2002; 9: 85–94.

    Article  CAS  PubMed  Google Scholar 

  9. Daemen T et al. Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki Forest virus expressing a fusion protein of E6 and E7. Vaccine 2003; 21: 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  10. Daemen T et al. Superior therapeutic efficacy of alphavirus-mediated immunization against Human Papilloma virus type 16 antigens in a murine tumor model: effects of the route of immunization. Antiviral Ther 2004; 9: 733–742.

    Google Scholar 

  11. Auewarakul P, Gissmann L, Cid-Arregui A . Targeted expression of the E6 and E7 oncogenes of human papillomavirus type 16 in the epidermis of transgenic mice elicits generalized epidermal hyperplasia involving autocrine factors. Mol Cell Biol 1994; 14: 8250–8258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Borchers A et al. E7-specific cytotoxic T cell tolerance in HPV-transgenic mice. Arch Virol 1999; 144: 1539–1556.

    Article  CAS  PubMed  Google Scholar 

  13. Michel N et al. Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination. Virology 2002; 294: 47–59.

    Article  CAS  PubMed  Google Scholar 

  14. Frazer IH et al. Split tolerance to a viral antigen expressed in thymic epithelium and keratinocytes. Eur J Immunol 1998; 28: 2791–2800.

    Article  CAS  PubMed  Google Scholar 

  15. Lin KY et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56: 21–26.

    CAS  PubMed  Google Scholar 

  16. Feltkamp MC et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 1993; 23: 2242–2249.

    Article  CAS  PubMed  Google Scholar 

  17. van der Burg SH et al. Pre-clinical safety and efficacy of TA-CIN, a recombinant HPV16 L2E6E7 fusion protein vaccine, in homologous and heterologous prime-boost regimens. Vaccine 2001; 19: 3652–3660.

    Article  CAS  PubMed  Google Scholar 

  18. Miyahira Y et al. Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 1995; 181: 45–54.

    Article  CAS  PubMed  Google Scholar 

  19. Colmenero P et al. Recombinant Semliki Forest virus vaccine vectors: the route of injection determines the localization of vector RNA and subsequent T cell response. Gene Therapy 2001; 8: 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  20. Barnard P, Payne E, McMillan NA . The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology 2000; 277: 411–419.

    Article  CAS  PubMed  Google Scholar 

  21. Youde SJ et al. Use of fluorogenic histocompatibility leukocyte antigen-A*0201/HPV 16 E7 peptide complexes to isolate rare human cytotoxic T-lymphocyte-recognizing endogenous human papillomavirus antigens. Cancer Res 2000; 60: 365–371.

    CAS  PubMed  Google Scholar 

  22. Tindle RW . Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer 2002; 2: 59–65.

    Article  CAS  PubMed  Google Scholar 

  23. Matzinger P . An innate sense of danger. Semin Immunol 1998; 10: 399–415.

    Article  CAS  PubMed  Google Scholar 

  24. Strauss JH, Strauss EG . The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 1994; 58: 491–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fournier P, Zeng J, Schirrmacher V . Two ways to induce innate immune responses in human PBMCs: paracrine stimulation of IFN-alpha responses by viral protein or dsRNA. Int J Oncol 2003; 23: 673–680.

    CAS  PubMed  Google Scholar 

  26. Wang L et al. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination. J Clin Invest 2002; 110: 1175–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fausch SC, Da Silva DM, Rudolf MP, Kast WM . Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol 2002; 169: 3242–3249.

    Article  CAS  PubMed  Google Scholar 

  28. Johnston LJ, Halliday GM, King NJ . Phenotypic changes in Langerhans' cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol 1996; 70: 4761–4766.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Glasgow GM et al. The Semliki Forest virus vector induces p53-independent apoptosis. J Gen Virol 1998; 79: 2405–2410.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor L Gissmann and Dr N Michel from the Deutsches Krebsforschungszentrum, Heidelberg, Germany for kindly providing us with founder transgenic K10HPV16-E6/E7 mice and VP22-E71–60 DNA, and Professor JE Degener from our department for his support and encouragement.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riezebos-Brilman, A., Regts, J., Freyschmidt, EJ. et al. Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant, E6/E7-transgenic mice. Gene Ther 12, 1410–1414 (2005). https://doi.org/10.1038/sj.gt.3302536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302536

Keywords

This article is cited by

Search

Quick links