Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p21(WAF1)-mediated transcriptional targeting of inducible nitric oxide synthase gene therapy sensitizes tumours to fractionated radiotherapy

Abstract

Cancer gene therapy that utilizes toxic transgene products requires strict transcriptional targeting to prevent adverse normal tissue effects. We report on the use of a promoter derived from the cyclin dependent kinase inhibitor, p21(WAF1), to control transgene expression. We demonstrate that this promoter is relatively silent in normal cells (L132, FSK, HMEC-1) compared to the almost constitutive expression obtained in tumour cells (DU145, LNCaP, HT29 and MCF-7) of varying p53 status, a characteristic that will be important in gene therapy protocols. In addition, we found that the p21(WAF1) promoter could be further induced by both external beam radiation (up to eight-fold in DU145 cells), intracellular-concentrated radionuclides ([211At]MABG) (up to 3.5-fold in SK-N-BE(2c) cells) and hypoxia (up to four-fold in DU145 cells). We have previously achieved significant radiosensitization of tumour cells both in vitro and in vivo by using inducible nitric oxide synthase (iNOS) gene therapy to generate the potent radiosensitizer, nitric oxide (NO). Here, we report that a clinically relevant schedule of p21(WAF1)-driven iNOS gene therapy significantly sensitized both p53 wild-type RIF-1 tumours and p53 mutant HT29 tumours to fractionated radiotherapy. Our data highlight the utility of this p21(WAF1)/iNOS-targeted approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Robson T, Hirst DG . Transcriptional targeting in cancer gene therapy. J Biomed Biotechnol 2003; 2: 110–137.

    Article  Google Scholar 

  2. Weichselbaum RR, Kufe DW, Advani SJ, Roizman B . Molecular targeting of gene therapy and radiotherapy. Acta Oncol 2001; 40: 735–738.

    Article  CAS  Google Scholar 

  3. Kufe D, Weichselbaum R . Radiation therapy: activation for gene transcription and the development of genetic radiotherapy–therapeutic strategies in oncology. Cancer Biol Ther 2003; 2: 326–329.

    Article  CAS  Google Scholar 

  4. Lopez CA, Kimchi ET, Mauceri HJ, Park JO, Mehta N, Murphy KT et al. Chemoinducible gene therapy: a strategy to enhance doxorubicin antitumour activity. Mol Cancer Ther 2004; 3: 1167–1175.

    Article  CAS  Google Scholar 

  5. Senzer N, Mani S, Rosemurgy A, Nemunaitis J, Cunningham C, Guha C et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumour necrosis factor alpha gene: a phase I study in patients with solid tumours. J Clin Oncol 2004; 22: 592–601.

    Article  CAS  Google Scholar 

  6. Mundt AJ, Vijayakumar S, Nemunaitis J, Sandler A, Schwartz H, Hanna N et al. A phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities. Clin Cancer Res 2004; 10: 5747–5753.

    Article  CAS  Google Scholar 

  7. Worthington J, Robson T, Scott S, Hirst D . Evaluation of a synthetic CArG promoter for nitric oxide synthase gene therapy of cancer. Gene Therapy 2005; 12: 1417–1423.

    Article  CAS  Google Scholar 

  8. Bussink J, Kaanders JH, van der Kogel AJ . Tumour hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 2003; 67: 3–15.

    Article  Google Scholar 

  9. Binley K, Kan O, White J, Naylor S . Exploiting the hypoxia response. Curr Opin Mol Ther 2003; 5: 650–656.

    CAS  Google Scholar 

  10. Cowen RL, Williams KJ, Chinje EC, Jaffar M, Sheppard FC, Telfer BA et al. Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumour radioresistance and effecting cure. Cancer Res 2004; 64: 1396–1402.

    Article  CAS  Google Scholar 

  11. Greco O, Dachs GU, Tozer GM, Kanthou C . Mechanisms of cytotoxicity induced by horseradish peroxidase/indole-3-acetic acid gene therapy. J Cell Biochem 2002; 87: 221–232.

    Article  CAS  Google Scholar 

  12. Salloum RM, Saunders MP, Mauceri HJ, Hanna NN, Gorski DH, Posner MC et al. Dual induction of the epo-egr-TNF-alpha-plasmid in hypoxic human colon adenocarcinoma produces tumour growth delay. Am Surg 2003; 69: 24–27.

    Google Scholar 

  13. Boulaire J, Fotedar A, Fotedar R . The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris) 2000; 48: 190–202.

    CAS  Google Scholar 

  14. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M . Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 2003; 115: 71–82.

    Article  CAS  Google Scholar 

  15. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumour suppression. Cell 1993; 75: 817–825.

    Article  CAS  Google Scholar 

  16. Gartel AL, Tyner AL . Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 1999; 246: 280–289.

    Article  CAS  Google Scholar 

  17. Worthington J, Robson T, Murray M, O'Rourke M, Keilty G, Hirst DG . Modification of vascular tone using iNOS under the control of a radiation-inducible promoter. Gene Therapy 2000; 7: 1126–1131.

    Article  CAS  Google Scholar 

  18. Worthington J, Robson T, O'Keeffe M, Hirst DG . Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy. Gene Therapy 2002; 9: 263–269.

    Article  CAS  Google Scholar 

  19. Worthington J, McCarthy HO, Barrett E, Adams C, Robson T, Hirst DG . Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J Gene Med 2004; 6: 673–680.

    Article  CAS  Google Scholar 

  20. Boyd M, Mairs RJ, Keith WN, Ross SC, Welsh P, Akabani G et al. An efficient targeted radiotherapy/gene therapy strategy utilising human telomerase promoters and radioastatine and harnessing radiation-mediated bystander effects. J Gene Med 2004; 6: 937–947.

    Article  CAS  Google Scholar 

  21. Robson T, Worthington J, McKeown SR, Hirst DG . Radiogenic therapy: novel approaches for enhancing tumour radiosensitivity. Technol Cancer Res Treat 2005; 4: 343–361.

    Article  CAS  Google Scholar 

  22. Scott SD, Greco O . Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev 2004; 23: 269–276.

    Article  CAS  Google Scholar 

  23. Brown JM, Giaccia AJ . The unique physiology of solid tumours: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58: 1408–1416.

    CAS  Google Scholar 

  24. Akashi M, Hachiya M, Osawa Y, Spirin K, Suzuki G, Koeffler HP . Irradiation induces WAF1 expression through a p53-independent pathway in KG-1 cells. J Biol Chem 1995; 270: 19181–19187.

    Article  CAS  Google Scholar 

  25. Wouters BG, Denko NC, Giaccia AJ, Brown JM . A p53 and apoptotic independent role for p21waf1 in tumour response to radiation therapy. Oncogene 1999; 18: 6540–6545.

    Article  CAS  Google Scholar 

  26. Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . HIF-1alpha induces cell cycle arrest by functionally counteracting myc. EMBO J 2004; 23: 1949–1956.

    Article  CAS  Google Scholar 

  27. Koshiji M, Huang LE . Dynamic balancing of the dual nature of HIF-1alpha for cell survival. Cell Cycle 2004; 3: 853–854.

    Article  CAS  Google Scholar 

  28. Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS . Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 2003; 23: 359–369.

    Article  CAS  Google Scholar 

  29. Salnikow K, Costa M, Figg WD, Blagosklonny MV . Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer. Cancer Res 2000; 60: 5630–5634.

    CAS  PubMed  Google Scholar 

  30. Scherr DS, Vaughan Jr ED, Wei J, Chung M, Felsen D, Allbright R et al. BCL-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol 1999; 162: 12–16; discussion 16–17.

    Article  CAS  Google Scholar 

  31. Bristow RG, Brail L, Jang A, Peacock J, Chung S, Benchimol S et al. P53-mediated radioresistance does not correlate with metastatic potential in tumourigenic rat embryo cell lines following oncogene transfection. Int J Radiat Oncol Biol Phys 1996; 34: 341–355.

    Article  CAS  Google Scholar 

  32. Yook JI, Kim J . Expression of p21WAF1/CIP1 is unrelated to p53 tumour suppressor gene status in oral squamous cell carcinomas. Oral Oncol 1998; 34: 198–203.

    Article  CAS  Google Scholar 

  33. Codegoni AM, Nicoletti MI, Buraggi G, Valoti G, Giavazzi R, D'Incalci M et al. Molecular characterisation of a panel of human ovarian carcinoma xenografts. Eur J Cancer 1998; 34: 1432–1438.

    Article  CAS  Google Scholar 

  34. McBride SR, Leonard N, Reynolds NJ . Loss of p21(WAF1) compartmentalisation in sebaceous carcinoma compared with sebaceous hyperplasia and sebaceous adenoma. J Clin Pathol 2002; 55: 763–766.

    Article  CAS  Google Scholar 

  35. el-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 1995; 55: 2910–2919.

    CAS  Google Scholar 

  36. Heliez C, Baricault L, Barboule N, Valette A . Paclitaxel increases p21 synthesis and accumulation of its AKT-phosphorylated form in the cytoplasm of cancer cells. Oncogene 2003; 22: 3260–3268.

    Article  CAS  Google Scholar 

  37. Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 1999; 18: 1223–1234.

    Article  CAS  Google Scholar 

  38. Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C . Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res 2003; 63: 52–59.

    CAS  Google Scholar 

  39. Wang WD, Chen ZT, Li DZ, Duan YZ, Wang ZX, Cao ZH . HSV-TK gene therapy of lung adenocarcinoma xenografts using a hypoxia/radiation dual-sensitive promoter. Ai Zheng 2004; 23: 788–793.

    CAS  PubMed  Google Scholar 

  40. Juang SH, Xie K, Xu L, Wang Y, Yoneda J, Fidler IJ . Use of retroviral vectors encoding murine inducible nitric oxide synthase gene to suppress tumourigenicity and cancer metastasis of murine melanoma. Cancer Biother Radiopharm 1997; 12: 167–175.

    Article  CAS  Google Scholar 

  41. Soler M, Camacho M, Molins-Pujol AM, Vila L . Effect of an imidazolineoxyl nitric oxide on prostaglandin synthesis in experimental shock: possible role of nitrogen dioxide in prostacyclin synthase inactivation. J Infect Dis 2001; 183: 105–112.

    Article  CAS  Google Scholar 

  42. Cook T, Wang Z, Alber S, Liu K, Watkins SC, Vodovotz Y et al. Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res 2004; 64: 8015–8021.

    Article  CAS  Google Scholar 

  43. Chang H, Benchimol S, Minden MD, Messner HA . Alterations of p53 and c-myc in the clonal evolution of malignant lymphoma. Blood 1994; 83: 452–459.

    CAS  PubMed  Google Scholar 

  44. Zeng M, Cerniglia GJ, Eck SL, Stevens CW . High-efficiency stable gene transfer of adenovirus into mammalian cells using ionizing radiation. Hum Gene Ther 1997; 8: 1025–1032.

    Article  CAS  Google Scholar 

  45. Zhang M, Li S, Li J, Ensminger WD, Lawrence TS . Ionizing radiation increases adenovirus uptake and improves transgene expression in intrahepatic colon cancer xenografts. Mol Ther 2003; 8: 21–28.

    Article  Google Scholar 

  46. Vaidyanathan G, Zalutsky MR . 1-(m-[211At]astatobenzyl)guanidine: synthesis via astato demetalation and preliminary in vitro and in vivo evaluation. Bioconjug Chem 1992; 3: 499–503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK Project Grants, C1278, C1425, A5600; HPSS R&D Office, NI, RES/1407/00: Neuroblastoma Society, UK 30911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Robson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, H., Worthington, J., Barrett, E. et al. p21(WAF1)-mediated transcriptional targeting of inducible nitric oxide synthase gene therapy sensitizes tumours to fractionated radiotherapy. Gene Ther 14, 246–255 (2007). https://doi.org/10.1038/sj.gt.3302871

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302871

Keywords

This article is cited by

Search

Quick links