Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Toward ‘SMART’ stem cells

A Corrigendum to this article was published on 19 February 2008

Abstract

Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Druker BJ . Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene 2002; 21: 8541–8546.

    Article  CAS  PubMed  Google Scholar 

  2. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    Article  CAS  PubMed  Google Scholar 

  3. Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S . Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA 2006; 103: 16870–16875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bordignon C, Roncarolo MG . Therapeutic applications for hematopoietic stem cell gene transfer. Nat Immunol 2002; 3: 318–321.

    Article  CAS  PubMed  Google Scholar 

  5. Booth C, Hershfield M, Notarangelo L, Buckley R, Hoenig M, Mahlaoui N et al. Management options for adenosine deaminase deficiency; proceedings of the EBMT satellite workshop (Hamburg, March 2006). Clin Immunol 2007; 123: 139–147.

    Article  CAS  PubMed  Google Scholar 

  6. Yang L, Baltimore D . Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells. Proc Natl Acad Sci USA 2005; 102: 4518–4523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  8. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  9. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  10. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells. Cancer Res 2006; 66: 9339–9344.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  13. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100: 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  15. O'Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  CAS  PubMed  Google Scholar 

  16. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ . Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946–10951.

    Article  CAS  PubMed  Google Scholar 

  17. Pouton CW, Haynes JM . Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 2007; 6: 605–616.

    Article  CAS  PubMed  Google Scholar 

  18. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  19. Metcalf D . On hematopoietic stem cell fate. Immunity 2007; 26: 669–673.

    Article  CAS  PubMed  Google Scholar 

  20. Potten MLaC (ed). Stem Cells and Cellular Pedigrees—A Conceptual Introduction. Academic Press: London, 1997, 1pp.

    Google Scholar 

  21. Blau HM, Brazelton TR, Weimann JM . The evolving concept of a stem cell: entity or function? Cell 2001; 105: 829–841.

    Article  CAS  PubMed  Google Scholar 

  22. Zipori D . The nature of stem cells: state rather than entity. Nat Rev Genet 2004; 5: 873–878.

    Article  CAS  PubMed  Google Scholar 

  23. Parker GC, Anastassova-Kristeva M, Broxmeyer HE, Dodge WH, Eisenberg LM, Gehling UM et al. Stem cells: shibboleths of development. Stem Cells Dev 2004; 13: 579–584.

    Article  PubMed  Google Scholar 

  24. Parker GC, Anastassova-Kristeva M, Eisenberg LM, Rao M, Williams MA, Sanberg PR et al. Stem cells: shibboleths of development, part II: toward a functional definition. Stem Cells Dev 2005; 14: 463–469.

    Article  CAS  PubMed  Google Scholar 

  25. Metcalf D . Concise review: hematopoietic stem cells and tissue stem cells: current concepts and unanswered questions. Stem Cells 2007; 10: 2390–2395.

    Article  Google Scholar 

  26. Ramalho-Santos M, Willenbring H . On the origin of the term ‘stem cell’. Cell Stem Cell 2007; 1: 35–38.

    Article  CAS  PubMed  Google Scholar 

  27. Till JE, Mcculloch CE . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222.

    Article  CAS  PubMed  Google Scholar 

  28. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells [published erratum appears in Science 1989 Jun 2;244(4908):1030]. Science 1988; 241: 58–62.

    Article  CAS  PubMed  Google Scholar 

  29. Spangrude GJ, Brooks DM, Tumas DB . Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 1995; 85: 1006–1016.

    CAS  PubMed  Google Scholar 

  30. Spangrude GJ, Brooks DM . Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly-6A/E by bone marrow cells. Blood 1993; 82: 3327–3332.

    CAS  PubMed  Google Scholar 

  31. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  32. Jones RJ, Wagner JE, Celano P, Zicha MS, Sharkis SJ . Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells [see comments]. Nature 1990; 347: 188–189.

    Article  CAS  PubMed  Google Scholar 

  33. Juopperi TA, Schuler W, Yuan X, Collector MI, Dang CV, Sharkis SJ . Isolation of bone marrow-derived stem cells using density-gradient separation. Exp Hematol 2007; 35: 335–341.

    Article  CAS  PubMed  Google Scholar 

  34. Hess DA, Meyerrose TE, Wirthlin L, Craft TP, Herrbrich PE, Creer MH et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 2004; 104: 1648–1655.

    Article  CAS  PubMed  Google Scholar 

  35. Morita Y, Ema H, Yamazaki S, Nakauchi H . Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 2006; 108: 2850–2856.

    Article  CAS  PubMed  Google Scholar 

  36. Dor Y, Brown J, Martinez OI, Melton DA . Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429: 41–46.

    Article  CAS  PubMed  Google Scholar 

  37. Morrison SJ, Kimble J . Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006; 441: 1068–1074.

    Article  CAS  PubMed  Google Scholar 

  38. Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ . Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest 2006; 116: 2808–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21(cip1/waf1). Science 2000; 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  40. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 2004; 431: 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    Article  CAS  PubMed  Google Scholar 

  42. Cavaleri F, Scholer HR . Nanog: a new recruit to the embryonic stem cell orchestra. Cell 2003; 113: 551–552.

    Article  CAS  PubMed  Google Scholar 

  43. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  PubMed  Google Scholar 

  44. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  45. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003; 425: 962–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lacorazza HD, Yamada T, Liu Y, Miyata Y, Sivina M, Nunes J et al. The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 2006; 9: 175–187.

    Article  CAS  PubMed  Google Scholar 

  47. Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T . In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 2004; 6: 436–442.

    Article  CAS  PubMed  Google Scholar 

  48. Pei XH, Bai F, Smith MD, Xiong Y . p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res 2007; 67: 3162–3170.

    Article  CAS  PubMed  Google Scholar 

  49. Yu H, Yuan Y, Shen H, Cheng T . Hematopoietic stem cell exhaustion impacted by p18INK4C and p21Cip1/Waf1 in opposite manners. Blood 2006; 107: 1200–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geiger H, Van Zant G . The aging of lympho-hematopoietic stem cells. Nat Immunol 2002; 3: 329–333.

    Article  CAS  PubMed  Google Scholar 

  51. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  52. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J et al. Increasing p16(INK4a) expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006; 443: 448–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16(INK4a). Nature 2006; 443: 421–426.

    Article  CAS  PubMed  Google Scholar 

  54. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL . Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297: 2256–2259.

    Article  CAS  PubMed  Google Scholar 

  55. Wagers AJ, Weissman IL . Plasticity of adult stem cells. Cell 2004; 116: 639–648.

    Article  CAS  PubMed  Google Scholar 

  56. Sung LY, Gao S, Shen H, Yu H, Song Y, Smith SL et al. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat Genet 2006; 38: 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  57. Jang YY, Sharkis SJ . Stem cell plasticity: a rare cell, not a rare event. Stem Cell Rev 2005; 1: 45–51.

    Article  CAS  PubMed  Google Scholar 

  58. Theise ND, Krause DS, Sharkis S . Comment on ‘Little evidence for developmental plasticity of adult hematopoietic stem cells’. Science 2003; 299: 1317; author reply 1317.

    Article  CAS  PubMed  Google Scholar 

  59. Metcalf D . Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 1998; 92: 345–347; discussion 352.

    CAS  PubMed  Google Scholar 

  60. Attar EC, Scadden DT . Regulation of hematopoietic stem cell growth. Leukemia 2004; 18: 1760–1768.

    Article  CAS  PubMed  Google Scholar 

  61. Molofsky AV, Pardal R, Morrison SJ . Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 2004; 16: 700–707.

    Article  CAS  PubMed  Google Scholar 

  62. Morrison SJ, Uchida N, Weissman IL . The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 1995; 11: 35–71.

    Article  CAS  PubMed  Google Scholar 

  63. Quesenberry PJ, Colvin GA, Lambert JF . The chiaroscuro stem cell: a unified stem cell theory. Blood 2002; 100: 4266–4271.

    Article  CAS  PubMed  Google Scholar 

  64. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden D . Stem cell repopulation efficiency but not pool size is governed by p27. Nat Med 2000; 6: 1235–1240.

    Article  CAS  PubMed  Google Scholar 

  65. Domen J, Cheshier SH, Weissman IL . The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med 2000; 191: 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. TeKippe M, Harrison DE, Chen J . Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp Hematol 2003; 31: 521–527.

    Article  CAS  PubMed  Google Scholar 

  67. Dumble M, Moore L, Chambers SM, Geiger H, Van Zant G, Goodell MA et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 2007; 109: 1736–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cheng T, Scadden DT . Cell cycle entry of hematopoietic stem and progenitor cells controlled by distinct cyclin-dependent kinase inhibitors. Int J Hematol 2002; 75: 460–465.

    Article  CAS  PubMed  Google Scholar 

  69. Bradford GB, Williams B, Rossi R, Bertoncello I . Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 1997; 25: 445–453.

    CAS  PubMed  Google Scholar 

  70. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF . Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0/G1 phase of the cell cycle. Blood 1997; 90: 4384–4393.

    CAS  PubMed  Google Scholar 

  71. Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT . Functional isolation and characterization of human hematopoietic stem cells. Science 1995; 267: 104–108.

    Article  CAS  PubMed  Google Scholar 

  72. Lerner C, Harrison DE . 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp Hematol 1990; 18: 114–118.

    CAS  PubMed  Google Scholar 

  73. Bertolini F, Battaglia M, Soligo D, Corsini C, Curioni C, Lazzari L et al. ‘Stem cell candidates’ purified by liquid culture in the presence of steel factor, IL-3, and 5FU are strictly stroma-dependent and have myeloid, lymphoid, and megakaryocytic potential. Exp Hematol 1997; 25: 350–356.

    CAS  PubMed  Google Scholar 

  74. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/Angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    Article  CAS  PubMed  Google Scholar 

  75. Chaudhary PM, Roninson IB . Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66: 85–94.

    Article  CAS  PubMed  Google Scholar 

  76. Rossi DJ, Seita J, Czechowicz A, Bhattacharya D, Bryder D, Weissman IL . Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 2007; 6: 2371–2376.

    Article  CAS  PubMed  Google Scholar 

  77. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL . Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447: 725–729.

    Article  CAS  PubMed  Google Scholar 

  78. Frimberger AE, McAuliffe CI, Werme KA, Tuft RA, Fogarty KE, Benoit BO et al. The fleet feet of haematopoietic stem cells: rapid motility, interaction and proteopodia. Br J Haematol 2001; 112: 644–654.

    Article  CAS  PubMed  Google Scholar 

  79. Frimberger AE, Stering AI, Quesenberry PJ . An in vitro model of hematopoietic stem cell homing demonstrates rapid homing and maintenance of engraftable stem cells. Blood 2001; 98: 1012–1018.

    Article  CAS  PubMed  Google Scholar 

  80. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  81. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002; 195: 1145–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee BC, Cheng T, Adams GB, Attar EC, Miura N, Lee SB et al. P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-marrow hematopoietic stem cells. Genes Dev 2003; 17: 1592–1604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Christopherson II KW, Hangoc G, Mantel CR, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    Article  CAS  PubMed  Google Scholar 

  84. Campbell TB, Hangoc G, Liu Y, Pollok K, Broxmeyer HE . Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev 2007; 16: 347–354.

    Article  CAS  PubMed  Google Scholar 

  85. Scadden DT . The stem-cell niche as an entity of action. Nature 2006; 441: 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  86. Fuchs E, Tumbar T, Guasch G . Socializing with the neighbors: stem cells and their niche. Cell 2004; 116: 769–778.

    Article  CAS  PubMed  Google Scholar 

  87. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  88. Meissner A, Wernig M, Jaenisch R . Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25: 1177–1181.

    Article  CAS  PubMed  Google Scholar 

  89. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448: 196–199.

    Article  CAS  PubMed  Google Scholar 

  90. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9: 1753–1765.

    Article  CAS  PubMed  Google Scholar 

  91. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang XB, Schwartz JL, Humphries RK, Kiem HP . Effects of HOXB4 overexpression on ex vivo expansion and immortalization of hematopoietic cells from different species. Stem Cells 2007; 25: 2074–2081.

    Article  CAS  PubMed  Google Scholar 

  93. Cheng T . Cell cycle inhibitors in normal and tumor stem cells. Oncogene 2004; 23: 7256–7266.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Drs Byeong-Chel Lee and Nicholas Lemoine for their critical reading of this manuscript, Paulina Huang and Matthew Boyer for their art work of Figure 1, and greatefully acknowledge the support from NIH (HL70561) and Chinese Agencies (Chang Jiang Scholarship and Tianjin Technology Funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, T. Toward ‘SMART’ stem cells. Gene Ther 15, 67–73 (2008). https://doi.org/10.1038/sj.gt.3303066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303066

Keywords

This article is cited by

Search

Quick links