Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large convection cells as the source of Betelgeuse's extended atmosphere

Abstract

Supergiant stars such as Betelgeuse have very extended atmospheres, the properties of which are poorly understood. Alfvén waves1,2,3,4, acoustic waves1,2,5,6,7 and radial pulsations8 have all been suggested as likely mechanisms for elevating these atmospheres and driving the massive outflows of gas seen in these stars: such mechanisms would heat the atmosphere from below, and there are indeed observations showing that Betelgeuse's extended atmosphere is hotter than the underlying photosphere9,10. Here we report radio observations of Betelgeuse that reveal the temperature structure of the extended atmosphere from two to seven times the photospheric radius. Close to the star, we find that the atmosphere has an irregular structure, and a temperature (3,450 ± 850 K) consistent with the photospheric temperature but much lower than that of gas in the same region probed by optical and ultraviolet observations10. This cooler gas decreases steadily in temperature with radius, reaching 1,370 ± 330 K by seven stellar radii. The cool gas coexists with the hot chromospheric gas, but must be much more abundant as it dominates the radio emission. Our results suggest that a few inhomogeneously distributed large convective cells (which are widely believed11,12,13,14,15,16 to be present in such stars) are responsible for lifting the cooler photospheric gas into the atmosphere; radiation pressure on dust grains that condense from this gas may then drive Betelgeuse's outflow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An image of Betelgeuse's atmosphere observed at a wavelength of 7 mm with the VLA.
Figure 2: The temperature profile of Betelgeuse's atmosphere measured at the radio wavelengths indicated below each point.

Similar content being viewed by others

References

  1. Hartmann, L. & MacGregor, K. B. Momentum and energy deposition in late-type stellar atmosphere and winds. Astrophys. J. 242, 260–282 (1980).

    Article  ADS  Google Scholar 

  2. Hartmann, L. & MacGregor, K. B. Wave-driven winds from cool stars. I. Some effects of magnetic field geometry. Astrophys. J. 247, 264–268 (1982).

    Article  ADS  Google Scholar 

  3. Holzer, T. E., FlÅ, T. & Leer, E. Alfvén waves in stellar winds. Astrophys. J. 275, 808–835 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Hartmann, L. & Avrett, E. H. On the extended chromosphere of α Orionis. Astrophys. J. 284, 238–249 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Ulmschneider, P. The chromospheric emission from acoustically heated stellar atmospheres. Astron. Astrophys. 222, 171–178 (1989).

    ADS  CAS  Google Scholar 

  6. Cuntz, M. Chromospheric extents predicted by time-dependent acoustic wave models. Astrophys. J. 349, 141–149 (1990).

    Article  ADS  Google Scholar 

  7. Cuntz, M. On the generation of mass loss in cool giant stars due to propagating shock waves. Astrophys. J. 353, 255–264 (1990).

    Article  ADS  Google Scholar 

  8. Bowen, G. H. Dynamical modelling of long-period variable star atmospheres. Astrophys. J. 329, 299–317 (1988).

    Article  ADS  Google Scholar 

  9. Gilliland, R. & Dupress, A. K. Stellar Surface Structure(eds Strassmeier, K. G. & Linsky, J. L.) 165–172 (IAU Symp. No. 176, Kluwer, Dordrecht, (1996).

    Google Scholar 

  10. Gilliland, R. & Dupree, A. K. First image of the surface of a star with the Hubble Space Telescope. Astrophys. J. 436, L29–L32 (1996).

    Article  ADS  Google Scholar 

  11. Schwarzschild, M. On the scale of photospheric convection in red giants and supergiants. Astrophys. J. 195, 137–144 (1991).

    Article  ADS  Google Scholar 

  12. Doherty, L. R. On the polarization of Alpha Orionis. Astrophys. J. 307, 261–268 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Buscher, D. F., Haniff, C. A., Baldwin, J. E. & Warner, P. J. Detection of a bright feature on the surface of Betelgeuse. Mon. Not. R. Astron. Soc. 245, 7P–11P (1990).

    ADS  Google Scholar 

  14. Wilson, R. W., Baldwin, J. E., Buscher, D. F. & Warner, P. J. High-resolution imaging of Betelgeuse and Mira. Mon. Not. R. Astron. Soc. 257, 369–376 (1992).

    Article  ADS  Google Scholar 

  15. Klückers, V. A., Edmunds, M. G., Morris, R. H. & Wooder, N. Reality and the speckle imaging of stellar surfaces — II. The asymmetry of Alpha Orionis. Mon. Not. R. Astron. Soc. 284, 711–716 (1997).

    Article  ADS  Google Scholar 

  16. Tuthill, P. G., Haniff, C. A. & Baldwin, J. E. Hotspots on late-type supergiants. Mon. Not. R. Astron. Soc. 285, 529–539 (1997).

    Article  ADS  Google Scholar 

  17. Dyck, H. M., Benson, J. A., van Belle, G. T. & Ridgway, S. T. Radii and effective temperatures of K and M giants and supergiants. Astron. J. 111, 1705–1712 (1996).

    Article  ADS  Google Scholar 

  18. Skinner, C. J. & Whitmore, B. The circumstellar environment of α Orionis. Mon. Not. R. Astron. Soc. 224, 335–348 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Skinner, C. J.et al. Circumstellar environments — V. The asymmetric chromosphere and dust shell of α Orionis. Mon. Not. R. Astron. Soc. 288, 295–306 (1997).

    Article  ADS  Google Scholar 

  20. Hebden, J. C., Eckart, A. & Hege, E. K. The Hα chromosphere of Alpha Orionis. Astrophys. J. 314, 690–698 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Reid, M. J. & Menten, K. M. Radio photospheres of long-period variable stars. Astrophys. J. 476, 327–346 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Kwok, S. Radiation pressure on grains as a mechanism for mass loss in red giants. Astrophys. J. 198, 583–591 (1975).

    Article  ADS  Google Scholar 

  23. Bester, M.et al. Measurement at 11 micron wavelength of the diameters of α Orionis and α Scorpii, and changes in effective temperature of α Orionis and very recent dust emission. Astrophys. J. 463, 336–343 (1996).

    Article  ADS  Google Scholar 

  24. Carilli, C. L., Holdaway, M. A. & Sowinski, K. P. Fast Switching at the VLA(VLA Scientific Memo. no. 169, National Radio Astronomical Observatory, Socorro, NM, (1996).

    Google Scholar 

Download references

Acknowledgements

The VLA is a facility of the National Radio Astronomy Observatory, which is operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. We thank B. Butler for providing us with the ellipse-fitting algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Carilli, C., White, S. et al. Large convection cells as the source of Betelgeuse's extended atmosphere. Nature 392, 575–577 (1998). https://doi.org/10.1038/33352

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33352

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing