Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation and sex in a competitive world

Abstract

How do deleterious mutations interact to affect fitness? The answer to this question has substantial implications for a variety of important problems in population biology, including the evolution of sex1,2,3, the rate of adaptation4,5 and the conservation of small populations3,6,7,8. Here we analyse a mathematical model of competition for food in which deleterious mutations affect competitive ability. We show that, if individuals usually compete in small groups, then competition can easily lead to a type of genetic interaction known as synergistic epistasis. This means that a deleterious mutation is most damaging in a genome that already has many other deleterious mutations. We also show that competition in small groups can produce a large advantage for sexual populations, both in mean fitness and in ability to resist invasion by asexual lineages. One implication of our findings is that experimental efforts to demonstrate synergistic epistasis may not succeed unless the experiments are redesigned to make them much more naturalistic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of five numerical studies.
Figure 2: Results from the numerical studies.
Figure 3: Results from the numerical studies using the modified model, for which there is a maximum allowable value of .

Similar content being viewed by others

References

  1. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 ( 1988).

    Article  ADS  CAS  Google Scholar 

  2. Charlesworth, B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55, 199–221 (1990).

    Article  CAS  Google Scholar 

  3. Peck, J. R., Barreau, G. & Health, S. C. Imperfect genes, Fisherian mutation and the evolution of sex. Genetics 145, 1171– 1199 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Charlesworth, B. Directional selection and the evolution of sex and recombination. Genet. Res. 61, 205–224 (1993).

    Article  CAS  Google Scholar 

  5. Waxman, D. & Peck, J. R. Sex and adaptation in a changing environment. Genetics 153, 1041– 1053 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kondrashov, A. S. Muller's ratchet under epistatic selection. Genetics 136, 1469–1473 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kondrashov, A. S. Contamination of the genome by very slightly deleterious mutations—why have we not died 100 times over? J. Theor. Biol. 175 , 583–594 (1995).

    Article  CAS  Google Scholar 

  8. Butcher, D. Muller's ratchet, epistasis and mutation effects. Genetics 141, 431–437 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimura, M. & Maruyama, T. The mutational load with epistatic gene interactions in fitness. Genetics 54, 1337–1351 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crow, J. F. in Mathematical Topics in Population Genetics (ed. Kojima, K.) (Springer, Berlin, 1970).

    Google Scholar 

  11. de Visser, J. A. G. M., Hoekstra, R. F. & van den Ende, H. An experimental test for synergistic epistasis and its application in Chlamydomonas. Genetics 145, 815–819 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. de Visser, J. A. G. M. & Hoekstra, R. F. Synergistic epistasis between loci affecting fitness: evidence in plants and fungi. Genet. Res. 71, 39–49 ( 1998).

    Article  Google Scholar 

  13. Elena, S. F. & Lenski, R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390 , 395–398 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Koelewijn, H. P. Effects of different levels of inbreeding on progeny fitness in Plantago coronopus. Evolution 52, 692– 702 (1998).

    Article  Google Scholar 

  15. West, S. A., Peters, A. D. & Barton, N. H. Testing for epistasis between deleterious mutations. Genetics 149, 435–444 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Willis, J. H. Effects of different levels of inbreeding on fitness components in Mumulus Guttaltus. Evolution 47, 864– 876 (1993).

    Article  Google Scholar 

  17. Eyre-Walker, A. & Keightley, P. D. High genomic deleterious mutation rates in hominids. Nature 397, 344–347 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Eyre-Walker, A. Evidence of selection on silent site base composition in mammals: Potential implications for the evolution of isochores and junk DNA. Genetics 152, 675–683 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fry, J. D., Keightley, P. D., Heinsohn, S. L. & Nuzhdin, S. V. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 96, 574–579 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Kondrashov, A. S. & Turelli, M. Deleterious mutations, apparent stabilizing selection and the maintenance of quantitative variation. Genetics 132, 603–618 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Peck, J. R. & Eyre-Walker, A. The muddle about mutations. Nature 387, 135–136 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Sved, J. A., Reed, T. E. & Bodmer, W. F. The number of balanced polymorphisms that can be maintained in a natural population. Genetics 55, 469–481 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. King, J. L. Continuously distributed factors affecting fitness. Genetics 55, 483–492 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Maynard Smith, J. The Evolution of Sex (Cambridge Univ. Press, Cambridge, 1978).

    Google Scholar 

  26. Parker, E. D. in Evolutionary Genetics from Molecules to Morphology (eds Singh, R. & Krimbas, C.) 450–475 (Cambridge Univ. Press, Cambridge, 2000.

    Google Scholar 

  27. Nygren, A. Apomixis in the angiosperms. Bot. Rev. 20, 577–649 (1954).

    Article  Google Scholar 

  28. Bell, G. The Masterpiece of Nature (Univ. California Press, San Francisco, 1982).

    Google Scholar 

  29. Krebs, C. J. Ecology 4th edn (Harper Collins, New York, 1994).

    Google Scholar 

  30. Gradshteyn, I. S. & Ryzhik, I. M. Table of Integrals, Series and Products (Academic, New York, 1980).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank J. Crow, A. Eyre-Walker, A. Kondrashov and J. Maynard Smith for advice. This study was supported by the Biotechnology and Biological Sciences Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel R. Peck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peck, J., Waxman, D. Mutation and sex in a competitive world. Nature 406, 399–404 (2000). https://doi.org/10.1038/35019055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019055

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing