Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dimensions and dynamics of co-ignimbrite eruption columns

Abstract

VERY powerful volcanic eruptions cannot always form classical Plinian eruption columns1–4. Instead, collapsing fountains may develop above the vent and shed pyroclastic flows which spread laterally along the ground5. The upper part of these hot, dense pyroclastic flows may become buoyant through the entrainment, heating and expansion of ambient air, coupled with the sedimentation of larger clasts suspended in the flow. The buoyant material may rise, in a co-ignimbrite eruption column, carrying massive quantities of fine dust and volatiles into the stratosphere6,7. Here we present a model of this process, and show that the co-ignimbrite columns associated with the eruptions of Toba8,9 75,000 years ago and Tambora10 in 1815 may have ascended only about 32 and 23 km; the latter is comparable with the less powerful 1982 Plinian eruption column of El Chichón11. This corroborates arguments that the mass of sulphuric acid aerosols injected into the stratosphere and not the eruptive power determines the climatic impact of an eruption12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sparks, R. S. J. & Wilson, L. J. Geol. Soc. Lond. 132, 441–452 (1976).

    Article  Google Scholar 

  2. Wilson, L., Sparks, R. S. J. & Walker, G. P. L. Geophys. J. R. astr. Soc. 63, 117–148 (1980).

    Article  ADS  Google Scholar 

  3. Bursik, M. I. & Woods, A. W. J. Volcan. geotherm. Res. (in the press).

  4. Wilson, L. & Walker, G. P. L. Geophys. J. R. astr. Soc. 89, 657–679. (1987).

    Article  ADS  Google Scholar 

  5. Sparks, R. S. J., Wilson, L. & Hulme, G. J. geophys. Res. 83, 1727–1739 (1978).

    Article  ADS  Google Scholar 

  6. Walker, G. P. L. Contr. Miner. Petrol. 36, 135–146 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Sparks, R. S. J. & Walker, G. P. L. J. Volcan. geotherm. Res. 2, 329–341 (1977).

    Article  ADS  Google Scholar 

  8. Ninkovich, D., Sparks, R. S. J. & Ledbetter, M. T. Bull. volcan. 41, 286–298 (1978).

    Article  ADS  Google Scholar 

  9. Rose, W. I. & Chesner, C. A. Geology 15, 913–917 (1987).

    Article  ADS  Google Scholar 

  10. Sigurddson, H. & Carey, S. Bull volcan. 51, 243–270 (1989).

    Article  ADS  Google Scholar 

  11. Carey, S. & Sigurdsson, H., Bull. Volcan. 48, 127–141 (1982).

    Article  ADS  Google Scholar 

  12. Rampino, M. R. & Self, S. Nature 310, 677–679 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Sigurdsson, H. Proc. Conf. on Global Catastrophies in the Earth History, Geol. Soc. Am. Spec. Pap. 247 (1989).

  14. Woods, A. W. Bull. Volcan. 50, 159–191 (1988).

    Article  ADS  Google Scholar 

  15. Valentine, G. & Wohletz, K. J. geophys. Res. 94, 1867–1887 (1989).

    Article  ADS  Google Scholar 

  16. Woods, A. W. & Bursik, M. I. Bull. Volcan. (in the press).

  17. Carey, S. & Sigurddson, H. Bull. Volcan. 51, 28–40 (1989).

    Article  ADS  Google Scholar 

  18. Rampino, M. & Self, S. Quart. Res. 18, 127–143 (1982).

    Article  Google Scholar 

  19. Self, S. & Rampino, M. R. Nature 294, 699–704 (1981).

    Article  ADS  Google Scholar 

  20. Carey, S. N., Sigurdsson, H. & Sparks, R. S. J. J. geophys. Res. 93, 15314–15328 (1988).

    Article  ADS  Google Scholar 

  21. Walker, G. P. L. J. Volcan. geotherm. Res. 11, 81–92 (1981).

    Article  ADS  Google Scholar 

  22. Machida, H. & Arai, F. Kagaku 46, 339–347 (1976).

    Google Scholar 

  23. Sparks, R. S. J. & Huang, T. C. Geol. Mag. 117, 425–436 (1980).

    Article  ADS  Google Scholar 

  24. Sparks, R. S. J., Moore, J. G. & Rice, C. J. J. Volcan. geotherm. Res. 28, 257–274 (1986).

    Article  ADS  Google Scholar 

  25. Morton, B., Taylor, Sir Geoffrey & Turner, J. S. Proc. R. Soc. Lond. A234, 1–24 (1956).

    ADS  Google Scholar 

  26. Huppert, H. E., Turner, J. S., Carey, S., Sparks, R. S. J. & Hallworth, M. A. J. Volcan. geotherm. Res. 30, 179–199 (1986).

    Article  ADS  Google Scholar 

  27. Lamb, H. H. Phil. Trans. R. Soc. A266, 425–533 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, A., Wohletz, K. Dimensions and dynamics of co-ignimbrite eruption columns. Nature 350, 225–227 (1991). https://doi.org/10.1038/350225a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350225a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing