Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kondo physics in carbon nanotubes

Abstract

The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes1 are quantum wires that have been found to act as one-dimensional quantum dots2,3, Luttinger liquids4,5, proximity-induced superconductors6,7 and ballistic8 and diffusive9 one-dimensional metals. Here we report that electrically contacted single-walled carbon nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain10 enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots11,12,13,14,15,16,17,18. The far greater tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects19,20 accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron numbers (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of a nanotube device with intermediate contact transmission probabilities.
Figure 2: Analysis of two high-conductance peak pairs.
Figure 3: dI/dV greyscale plot in a different V g region at T = 75 mK.
Figure 4: Effect of perpendicular magnetic field B.

Similar content being viewed by others

References

  1. Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22–28 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Tans, S. et al. Individual single-walled carbon nanotubes as quantum wires. Nature 386, 474–477 ( 1997).

    Article  ADS  CAS  Google Scholar 

  3. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 ( 1997).

    Article  CAS  Google Scholar 

  4. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 ( 1999).

    Article  ADS  CAS  Google Scholar 

  5. Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402 , 273–276 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Kasumov, A. Y. et al. Supercurrents through single-walled carbon nanotubes. Science 284, 1508–1511 ( 1999).

    Article  ADS  CAS  Google Scholar 

  7. Morpurgo, A. F., Kong, J., Marcus, C. & Dai, H. Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263–265 (1999).

    Article  CAS  Google Scholar 

  8. Frank, S., Poncharal, S. P., Wang, Z. L. & de Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Bachtold, A. et al. Aharonov–Bohm oscillations in carbon nanotubes. Nature 397, 673–675 ( 1999).

    Article  ADS  CAS  Google Scholar 

  10. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  11. Glazman, L. I. & Raikh, M. E. Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett. 47, 452–455 ( 1988).

    ADS  Google Scholar 

  12. Ng, T. K. & Lee, P. A. On-site Coulomb repulsion and resonant tunneling. Phys. Rev. Lett. 61, 1768– 1771 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Meir, Y., Wingreen, N. S. & Lee, P. A. Low-temperature transport through a quantum dot: the Anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–2604 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 ( 1998).

    Article  ADS  CAS  Google Scholar 

  15. Goldhaber-Gordon, D. et al. From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys. Rev. Lett. 81, 5225– 5228 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tuneable Kondo effect in quantum dots. Science 281, 540–544 ( 1998).

    Article  ADS  CAS  Google Scholar 

  17. Schmid, J., Weis, J., Eberl, K. & v. Klirtzing, K. A quantum dot in the limit of strong coupling to reservoirs. Physica B 256–258, 182–185 ( 1998).

    Article  ADS  Google Scholar 

  18. Simmel, F., Blick, R. H., Kotthaus, J. P., Wegscheider, W. & Bichler, M. Anomalous Kondo effect in a quantum dot at nonzero bias. Phys. Rev. Lett. 83, 804–807 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Sasaki, S. et al. A novel Kondo effect in an integer-spin quantum dot. Nature 405, 764–767 ( 2000).

    Article  ADS  CAS  Google Scholar 

  20. Pustilnik, M., Avishai, Y. & Kikoin, K. Quantum dots with even number of electrons: Kondo effect in a finite magnetic field. Phys. Rev. Lett. 84, 1756–1759 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Nygård, J., Cobden, D. H., Bockrath, M., McEuen, P. L. & Lindelof, P. E. Electrical transport measurements on single-walled carbon nanotubes. Appl. Phys. A 69 , 297–304 (1999).

    Article  ADS  Google Scholar 

  22. Soh, H. T. et al. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627–629 ( 1999).

    Article  ADS  CAS  Google Scholar 

  23. Glazman, L. I. Single electron tunneling. J. Low Temp. Phys. 118, 247–269 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Tans, S., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 ( 1998).

    Article  ADS  CAS  Google Scholar 

  25. Cobden, D. H., Bockrath, M., McEuen, P. L., Rinzler, A. G. & Smalley, R. E. Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681–684 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 ( 1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Rinzler and R. Smalley for supplying the nanotubes, K. G. Rasmussen, M. M. Andreasen, A. E. Hansen and A. Kristensen for experimental assistance, and M. Pustilnik, N. Wingreen, L. P. Kouwenhoven, N. d'Ambrumenil, P. R. Poulsen and P. L. McEuen for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Henry Cobden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygård, J., Cobden, D. & Lindelof, P. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000). https://doi.org/10.1038/35042545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35042545

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing