Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantal transmitter secretion from myocytes loaded with acetylcholine

Abstract

IT is well known that transmitter secretion requires specialized secretory organdies, the synaptic vesicles, for the packaging, storage and exocytotic release of the transmitter1,2. Here we report that when acetylcholine (ACh) is loaded into an isolated Xenopus myocyte, there is spontaneous quantal release of ACh from the myocyte which results in activation of its own surface ACh channels and the appearance of membrane currents resembling miniature endplate currents. This myocyte secretion probably reflects Ca2+-regulated exocytosis of ACh-filled cytoplasmic compartments. Furthermore, step depolarization of the myocyte membrane triggers evoked ACh release from the myocyte with a weak excitation–secretion coupling. These findings suggest that quantal transmitter secretion does not require secretory pathways unique to neurons and that the essence of presynaptic differentiation may reside in the provision of transmitter supply and modification of the preexisting secretion pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, 1969).

    Google Scholar 

  2. Kandel, E. R., Schwartz, J. H. & Jessel, T. Principles of Neural Science 3rd edn (Elsevier, Amsterdam, 1991).

    Google Scholar 

  3. Orida, N. & Poo, M.-m. Nature 275, 31–35 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Poo, M.-m. Nature 295, 332–334 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflugers Arch. 391, 80–100 (1981).

    Article  Google Scholar 

  6. Young, S. H. & Poo, M.-m. Nature 304, 161–163 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Evers, J., Laser, M., Sun, Y., Xie, Z. & Poo, M.-m. J. Neurosci. 9, 1523–1539 (1989).

    Article  CAS  Google Scholar 

  8. Morel, N., Israel, M. & Manaranche, R. J. Neurochem. 30, 1553–1557 (1978).

    Article  CAS  Google Scholar 

  9. Israel, M., Dunant, Y. & Manaranche, R. Progr. Neurobiol. 13, 237–275 (1979).

    Article  CAS  Google Scholar 

  10. Katz, B. & Miledi, R. Proc. R. Soc. Lond. (Biol.) 196, 59–72 (1977).

    ADS  CAS  Google Scholar 

  11. Poulain, B., Baux, G. & Tauc, L. J. Physiol., Paris 81, 270–277 (1986).

    CAS  Google Scholar 

  12. Sun, Y. & Poo, M.-m. J. Neurosci. 5, 634–642 (1985).

    Article  CAS  Google Scholar 

  13. Tabti, N., Lupa, M. T., Yu, S. P. & Thesleff, S. Acta physiol. Scand. 128, 429–426 (1986).

    Article  CAS  Google Scholar 

  14. Whittaker, V. B., Essman, W. B. & Dowe, G. H. C. Biochem. J. 128, 833–846 (1972).

    Article  CAS  Google Scholar 

  15. Heuser, J. E. et al. J. Cell Biol. 81, 275–300 (1979).

    Article  CAS  Google Scholar 

  16. Takahashi, T. Nakajima, Y., Hirosawa, K., Nakajima, S. & Onodera, K. J. Neurosci. 7, 473–481 (1987).

    Article  CAS  Google Scholar 

  17. Buchanan, J., Sun, Y. & Poo, M.-m. J. Neurosci. 9, 1544–1554 (1989).

    Article  Google Scholar 

  18. Marshall, I. G. & Parsons, S. M. Trends Neurosci. 10, 1174–1177 (1987).

    Article  Google Scholar 

  19. Marshall, I. G., Prior, C. & Searl, T. J. Physiol. Lond. 424, 52P (1990).

    Google Scholar 

  20. Enomoto, K. Eur. J. Pharmac. 147, 209–215 (1988).

    Article  CAS  Google Scholar 

  21. Kuffler, S. W. & Yoshikami, D. J. Physiol. Lond. 251, 465–482 (1975).

    Article  CAS  Google Scholar 

  22. De Camilli, P., Benfenati, F., Valtora, F. & Greengard, P. A. Rev. Cell Biol. 6, 433–460 (1990).

    Article  CAS  Google Scholar 

  23. De Camilli, P. & Jahn, R. A. Rev. Physiol. 52, 625–645 (1990).

    Article  CAS  Google Scholar 

  24. Südhof, T. C. & Jahn, R. Neuron 6, 665–677 (1991).

    Article  Google Scholar 

  25. Trimble, A. W., Linial, M. & Scheller, R. Rev. Neurosci. 14, 93–122 (1991).

    Article  CAS  Google Scholar 

  26. Spitzer, C. C. & Lamborghini, H. E. Proc. natn. Acad. Sci. U.S.A. 73, 1641–1645 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Anderson, M. J., Cohen, M. W. & Zorychta, E. J. Physiol., Lond. 268, 731–758 (1977).

    Article  CAS  Google Scholar 

  28. Tabti, N. & Poo, M.-m. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 137–153 (MIT, Cambridge, 1991).

    Google Scholar 

  29. Minta, A., Kao, J. P Y. & Tsien, R. Y. J. biol. Chem. 264, 8171–8178 (1989).

    CAS  PubMed  Google Scholar 

  30. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan, Y., Poo, Mm. Quantal transmitter secretion from myocytes loaded with acetylcholine. Nature 359, 733–736 (1992). https://doi.org/10.1038/359733a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359733a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing