Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On the molecular origin of photoreceptor noise

Abstract

RETINAL photoreceptors are noisy. They generate discrete electrical events in the dark indistinguishable from those evoked by light1,2 and thereby limit visual sensitivity at low levels of illumination3,4. The random spontaneous events are strongly temperature-dependent and have been attributed to thermal isomerizations of the vitamin A chromophore of rhodopsin, the light-sensitive molecule in photoreceptors1,5,6. But thermal generation of dark events in both vertebrate and invertebrate photoreceptors requires activation energies in the range of 23 to 27 kcal mol−1, which are significantly less than the energy barrier of 45 kcal mol −1 for photoisomerization of the chromophore of native rhodopsin7–9. We propose that photoreceptor noise results from the thermal isomeriz-ation of a relatively unstable form of rhodopsin, one in which the Schiff-base linkage between the chromophore and protein is unprotonated. This molecular mechanism is supported by both theoretical calculations of the properties of rhodopsin and experimental measurements of the properties of photoreceptor noise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baylor, D. A., Matthews, G. & Yau, K. W. J. Physiol. 309, 591–621 (1980).

    Article  CAS  Google Scholar 

  2. Yeandle, S. Am. J. Ophthalmol. 46, 82–87 (1958).

    Google Scholar 

  3. Copenhagen, D. R., Donner, K. & Reuter, T. J. J. Physiol. 393, 667–680 (1987).

    Article  CAS  Google Scholar 

  4. Aho, A. C., Donner, K., Hyden, C., Larsen, L. O. & Reuter, T. Nature 334, 348–350 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Barlow, H. B. J. Opt. Soc. Am. 46, 634–639 (1956).

    Article  ADS  CAS  Google Scholar 

  6. Barlow, H. B. Nature 334, 296–297 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Birge, R. R. Biochim. biophys. Acta 1016, 293–327 (1990).

    Article  CAS  Google Scholar 

  8. Tallent, J. R., Hyde, E. W., Findsen, L. A., Fox, G. C. & Birge, R. R. J. Am. chem. Soc. 114, 1581–1592 (1992).

    Article  CAS  Google Scholar 

  9. Schick, G. A., Cooper, T. M., Holloway, R. A., Murray, L. P. & Birge, R. R. Biochemistry 26, 2556–2562 (1987).

    Article  CAS  Google Scholar 

  10. Ashmore, J. F. & Falk, G. J. Physiol. 332, 272–297 (1977).

    Google Scholar 

  11. Hubbard, R. J. biol. Chem. 241, 1814–1818 (1966).

    CAS  PubMed  Google Scholar 

  12. Longstaff, C., Calhoon, R. D. & Rando, R. R. Proc. natn. Acad. Sci. U.S.A. 83, 4209–4213 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Sakmar, T. P., Franke, R. R. & Khorana, H. G. Proc. natn. Acad. Sci. U.S.A. 86, 8309–8313 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Fahmy, K. & Sakmar, T. P. Biochemistry 32, 9165–9171 (1993).

    Article  CAS  Google Scholar 

  15. Barlow, R. B. Jr, Kaplan, E., Renninger, G. H. & Saito, T. J. gen. Physiol. 89, 353–378 (1987).

    Article  Google Scholar 

  16. Kaplan, E. & Barlow, R. B. Jr Nature 286, 393–395 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Birge, R. R. Biophys. J. 64, 1371–1372 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Corson, D. W. & Fein, A. Brain Res. 193, 558–561 (1980).

    Article  CAS  Google Scholar 

  19. Lisman, J. E. & Strong, L. A. J. gen. Physiol. 73, 219–243 (1980).

    Article  Google Scholar 

  20. Chesler, M. Prog. Neurobiol. 34, 401–427 (1990).

    Article  CAS  Google Scholar 

  21. Fahrenbach, W. H. Z. zellforsch. mikrosk. anat. 93, 451–483 (1969).

    Article  CAS  Google Scholar 

  22. Schneider, M. H., Lehman, H. K. & Barlow, R. B. Jr, Invest. Ophth. Vis. Sci. 28, (suppl.) 186 (1987).

    Google Scholar 

  23. Kass, L., Pelletier, J. L., Renninger, G. H. & Barlow, R. B. Jr J. comp. Physiol. A164, 95–105 (1988).

    Article  CAS  Google Scholar 

  24. Barlow, R. B. Jr, Ireland, L. C. & Kass, L. Nature 296, 65–66 (1982).

    Article  ADS  Google Scholar 

  25. Powers, M. K., Barlow, R. B. Jr & Kass, L. Visual Neurosci. 7, 179–189 (1991).

    Article  CAS  Google Scholar 

  26. Baylor, D. A., Nunn, B. J. & Schnapf, J. L. J. Physiol. 357, 575–607 (1984).

    Article  CAS  Google Scholar 

  27. Lillywhite, P. G. J. comp. Physiol. 122, 189–200 (1977).

    Article  Google Scholar 

  28. Borgula, G. A., Karwoski, C. J. & Steinberg, R. H. Vision Res. 29, 1069–1077 (1989).

    Article  CAS  Google Scholar 

  29. Oakley, B. II & Wen, R. J. Physiol. 419, 353–378 (1989).

    Article  Google Scholar 

  30. Smith, W. C., Greenberg, R. M., Price, D. A. & Battelle, B. A. Invest. Ophth. Vis. Sci. 33, (suppl.) 1004 (1992).

    Google Scholar 

  31. Chesler, M. & Kraig, R. P. Am. J. Physiol. 253, R666–R670 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barlow, R. B. Jr J. Neurosci. 3, 856–870 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlow, R., Birge, R., Kaplan, E. et al. On the molecular origin of photoreceptor noise. Nature 366, 64–66 (1993). https://doi.org/10.1038/366064a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366064a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing