Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction

Abstract

The uterus in early pregnancy is a non-lymphoid organ that is enriched in natural killer (NK) cells. Studies to address the role of these abundant human NK cells at the maternal/fetal interface have focused on their response to the major histocompatibility complex (MHC) molecules on fetal trophoblast cells that they contact. The interaction of maternal NK cell receptors belonging to the killer cell immunoglobulin-like receptor (KIR) family with trophoblast MHC class I molecules in pregnancy can regulate NK cell activation for secretion of pro-angiogenic factors that promote placental development. This review will cover the role of KIR at the maternal/fetal interface and focus on KIR2DL4, a KIR family member that is uniquely poised to play a role in pregnancy due to the restricted expression of its ligand, human leukocyte antigen (HLA)-G, by fetal trophoblast cells early in pregnancy. The pathways by which KIR2DL4–HLA-G interactions induce the cellular senescence of NK cells and the role of the resulting senescence-associated secretory phenotype (SASP) in vascular remodeling will be discussed in the context of reproduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lanier LL . NK cell recognition. Annu Rev Immunol 2005; 23: 225–274.

    Article  CAS  PubMed  Google Scholar 

  2. Moffett-King A . Natural killer cells and pregnancy. Nat Rev Immunol 2002; 2: 656–663.

    Article  CAS  PubMed  Google Scholar 

  3. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44–49.

    Article  CAS  PubMed  Google Scholar 

  4. Sun JC, Lanier LL . Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity? Eur J Immunol 2009; 39: 2059–2064.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Chen Z, Smith GN, Croy BA . Natural killer cell-triggered vascular transformation: maternal care before birth? Cell Mol Immunol 2010; 8: 1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Erlebacher A . Immunology of the maternal–fetal interface. Annu Rev Immunol 2013; 31: 387–411.

    Article  CAS  PubMed  Google Scholar 

  7. Croy BA, Esadeg S, Chantakru S, van den Heuvel M, Paffaro VA, He H et al. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J Reprod Immunol 2003; 59: 175–191.

    Article  PubMed  Google Scholar 

  8. Bulmer JN, Lash GE . Human uterine natural killer cells: a reappraisal. Mol Immunol 2005; 42: 511–521.

    Article  CAS  PubMed  Google Scholar 

  9. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 2006; 12: 1065–1074.

    Article  CAS  PubMed  Google Scholar 

  10. Kopcow HD, Allan DS, Chen X, Rybalov B, Andzelm MM, Ge B et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci USA 2005; 102: 15563–15568.

    Article  CAS  PubMed  Google Scholar 

  11. Le Bouteiller P . Human decidual NK cells: unique and tightly regulated effector functions in healthy and pathogen-infected pregnancies. Front Immunol 2013; 4: 404.

    Article  PubMed  Google Scholar 

  12. Siewiera J, El Costa H, Tabiasco J, Berrebi A, Cartron G, Le Bouteiller P et al. Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLoS Pathog 2013; 9: e1003257.

    Article  CAS  PubMed  Google Scholar 

  13. Trowsdale J, Moffett A . NK receptor interactions with MHC class I molecules in pregnancy. Semin Immunol 2008; 20: 317–320.

    Article  CAS  PubMed  Google Scholar 

  14. Carosella ED, Favier B, Rouas-Freiss N, Moreau P, Lemaoult J . Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood 2008; 111: 4862–4870.

    Article  CAS  PubMed  Google Scholar 

  15. Rajagopalan S, Fu J, Long EO . Cutting edge: induction of IFN-gamma production but not cytotoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J Immunol 2001; 167: 1877–1881.

    Article  CAS  PubMed  Google Scholar 

  16. van der Meer A, Lukassen HG, van Lierop MJ, Wijnands F, Mosselman S, Braat DD et al. Membrane-bound HLA-G activates proliferation and interferon-gamma production by uterine natural killer cells. Mol Hum Reprod 2004; 10: 189–195.

    Article  CAS  PubMed  Google Scholar 

  17. van der Meer A, Lukassen HG, van Cranenbroek B, Weiss EH, Braat DD, van Lierop MJ et al. Soluble HLA-G promotes Th1-type cytokine production by cytokine-activated uterine and peripheral natural killer cells. Mol Hum Reprod 2007; 13: 123–133.

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Houser BL, Nicotra ML, Strominger JL . HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc Natl Acad Sci USA 2009; 106: 5767–5772.

    Article  CAS  PubMed  Google Scholar 

  19. Rouas-Freiss N, Goncalves RM, Menier C, Dausset J, Carosella ED . Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 1997; 94: 11520–11525.

    Article  CAS  PubMed  Google Scholar 

  20. Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED . The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA 1997; 94: 5249–5254.

    Article  CAS  PubMed  Google Scholar 

  21. Riteau B, Menier C, Khalil-Daher I, Martinozzi S, Pla M, Dausset J et al. HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int Immunol 2001; 13: 193–201.

    Article  CAS  PubMed  Google Scholar 

  22. Rizzo R, Vercammen M, van de Velde H, Horn PA, Rebmann V . The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells. Cell Mol Life Sci 2010; 68: 341–352.

    Article  PubMed  Google Scholar 

  23. Parham P . MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005; 5: 201–214.

    Article  CAS  PubMed  Google Scholar 

  24. Long EO, Sik Kim H, Liu D, Peterson ME, Rajagopalan S . Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol. 2013; 31: 227–258.

    Article  CAS  PubMed  Google Scholar 

  25. Parham P, Guethlein LA . Pregnancy immunogenetics: NK cell education in the womb? J Clin Invest 2010; 120: 3801–3804.

    Article  CAS  PubMed  Google Scholar 

  26. Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CW, Carrington M, Trowsdale J et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004; 200: 957–965.

    Article  CAS  PubMed  Google Scholar 

  27. Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L, Mulder A et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest 2010; 120: 4102–4110.

    Article  CAS  PubMed  Google Scholar 

  28. Kieckbusch J, Gaynor LM, Moffett A, Colucci F . MHC-dependent inhibition of uterine NK cells impedes fetal growth and decidual vascular remodelling. Nat Commun 2014; 5: 3359.

    Article  PubMed  Google Scholar 

  29. Vacca P, Mingari MC, Moretta L . Natural killer cells in human pregnancy. J Reprod Immunol 2013; 97: 14–19.

    Article  CAS  PubMed  Google Scholar 

  30. Lash GE, Naruse K, Innes BA, Robson SC, Searle RF, Bulmer JN . Secretion of angiogenic growth factors by villous cytotrophoblast and extravillous trophoblast in early human pregnancy. Placenta 2010; 31: 545–548.

    Article  CAS  PubMed  Google Scholar 

  31. El Costa H, Casemayou A, Aguerre-Girr M, Rabot M, Berrebi A, Parant O et al. Critical and differential roles of NKp46- and NKp30-activating receptors expressed by uterine NK cells in early pregnancy. J Immunol 2008; 181: 3009–3017.

    Article  CAS  PubMed  Google Scholar 

  32. Madeja Z, Yadi H, Apps R, Boulenouar S, Roper SJ, Gardner L et al. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc Natl Acad Sci USA 2011; 108: 4012–4017.

    Article  CAS  PubMed  Google Scholar 

  33. Xiong S, Sharkey AM, Kennedy PR, Gardner L, Farrell LE, Chazara O et al. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation. J Clin Invest 2013; 123: 4264–4272.

    Article  CAS  PubMed  Google Scholar 

  34. Rajagopalan S, Long EO . A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 1999; 189: 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  35. Rajagopalan S, Long EO . KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol 2012; 3: 258.

    Article  PubMed  Google Scholar 

  36. Faure M, Long EO . KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential. J Immunol 2002; 168: 6208–6214.

    Article  CAS  PubMed  Google Scholar 

  37. Kikuchi-Maki A, Catina TL, Campbell KS . Cutting edge: KIR2DL4 transduces signals into human NK cells through association with the Fc receptor gamma protein. J Immunol 2005; 174: 3859–3863.

    Article  CAS  PubMed  Google Scholar 

  38. Rajagopalan S, Bryceson YT, Kuppusamy SP, Geraghty DE, van der Meer A, Joosten I et al. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol 2006; 4: e9.

    Article  PubMed  Google Scholar 

  39. Park GM, Lee S, Park B, Kim E, Shin J, Cho K et al. Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophys Res Commun 2004; 313: 606–611.

    Article  CAS  PubMed  Google Scholar 

  40. Ponte M, Cantoni C, Biassoni R, Tradori-Cappai A, Bentivoglio G, Vitale C et al. Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc Natl Acad Sci USA 1999; 96: 5674–5679.

    Article  CAS  PubMed  Google Scholar 

  41. Boyson JE, Erskine R, Whitman MC, Chiu M, Lau JM, Koopman LA et al. Disulfide bond-mediated dimerization of HLA-G on the cell surface. Proc Natl Acad Sci USA 2002; 99: 16180–16185.

    Article  CAS  PubMed  Google Scholar 

  42. Long EO, Rajagopalan S . HLA class I recognition by killer cell Ig-like receptors. Semin Immunol 2000; 12: 101–108.

    Article  CAS  PubMed  Google Scholar 

  43. Allan DS, Colonna M, Lanier LL, Churakova TD, Abrams JS, Ellis SA et al. Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomonocytic cells. J Exp Med 1999; 189: 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  44. Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A . A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol 2007; 37: 1924–1937.

    Article  CAS  PubMed  Google Scholar 

  45. Clements CS, Kjer-Nielsen L, McCluskey J, Rossjohn J . Structural studies on HLA-G: implications for ligand and receptor binding. Hum Immunol 2007; 68: 220–226.

    Article  CAS  PubMed  Google Scholar 

  46. Kikuchi-Maki A, Yusa S, Catina TL, Campbell KS . KIR2DL4 is an IL-2-regulated NK cell receptor that exhibits limited expression in humans but triggers strong IFN-gamma production. J Immunol 2003; 171: 3415–3425.

    Article  CAS  PubMed  Google Scholar 

  47. Rajagopalan S . Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4 (CD158d). Traffic 2010; 11: 1381–1390.

    Article  CAS  Google Scholar 

  48. Brusilovsky M, Cordoba M, Rosental B, Hershkovitz O, Andrake MD, Pecherskaya A et al. Genome-wide siRNA screen reveals a new cellular partner of NK cell receptor KIR2DL4: heparan sulfate directly modulates KIR2DL4-mediated responses. J Immunol 2013; 191: 5256–5267.

    Article  CAS  PubMed  Google Scholar 

  49. Rajagopalan S, Moyle MW, Joosten I, Long EO . DNA-PKcs controls an endosomal signaling pathway for a proinflammatory response by natural killer cells. Sci Signal 2010; 3: ra14.

    Article  PubMed  Google Scholar 

  50. Rajagopalan S, Lee EC, Duprie ML, Long EO . TNFR-associated factor 6 and TGF-beta-activated kinase 1 control signals for a senescence response by an endosomal NK cell receptor. J Immunol 2014; 192: 714–721.

    Article  CAS  PubMed  Google Scholar 

  51. Miah SM, Purdy AK, Rodin NB, MacFarlane AW 4th, Oshinsky J, Alvarez-Arias DA et al. Ubiquitylation of an internalized killer cell Ig-like receptor by Triad3A disrupts sustained NF-kappaB signaling. J Immunol 2011; 186: 2959–2969.

    Article  CAS  PubMed  Google Scholar 

  52. Scita G, Di Fiore PP . The endocytic matrix. Nature 2010; 463: 464–473.

    Article  CAS  PubMed  Google Scholar 

  53. Rajagopalan S, Long EO . Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci USA 2012; 109: 20596–20601.

    Article  CAS  PubMed  Google Scholar 

  54. Rodier F, Campisi J . Four faces of cellular senescence. J Cell Biol 2011; 192: 547–556.

    Article  CAS  PubMed  Google Scholar 

  55. Kuilman T, Peeper DS . Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9: 81–94.

    Article  CAS  Google Scholar 

  56. Coppe JP, Desprez PY, Krtolica A, Campisi J . The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99–118.

    Article  CAS  PubMed  Google Scholar 

  57. Koopman LA, Kopcow HD, Rybalov B, MacFarlane AW 4th, Oshinsky J, Alvarez-Arias DA et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 2003; 198: 1201–1212.

    Article  CAS  PubMed  Google Scholar 

  58. Rajagopalan S, Long EO . A positive role for senescence in reproduction? Aging (Albany NY) 2013; 5: 96–97.

    Article  Google Scholar 

  59. Croy BA, Chen Z, Hofmann AP, Lord EM, Sedlacek AL, Gerber SA . Imaging of vascular development in early mouse decidua and its association with leukocytes and trophoblasts. Biol Reprod 2012; 87: 125.

    Article  PubMed  Google Scholar 

  60. Henson SM, Akbar AN . KLRG1—more than a marker for T cell senescence. Age (Dordr) 2009; 31: 285–291.

    Article  CAS  Google Scholar 

  61. Chuprin A, Gal H, Biron-Shental T, Biran A, Amiel A, Rozenblatt S et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev 2013; 27: 2356–2366.

    Article  CAS  PubMed  Google Scholar 

  62. Goldman-Wohl D, Yagel S . United we stand not dividing: the syncytiotrophoblast and cell senescence. Placenta 2014; 35: 341–344.

    Article  CAS  PubMed  Google Scholar 

  63. Campisi J, d'Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  Google Scholar 

  64. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978–990.

    Article  CAS  PubMed  Google Scholar 

  65. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 2013; 155: 1119–1130.

    Article  CAS  PubMed  Google Scholar 

  66. Munoz-Espin D, Canamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S et al. Programmed cell senescence during mammalian embryonic development. Cell 2013; 155: 1104–1118.

    Article  CAS  Google Scholar 

  67. van Deursen JM . The role of senescent cells in ageing. Nature 2014; 509: 439–446.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr E O Long for his support. This work was supported by the Intramural Research Program of the NIAID, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumati Rajagopalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopalan, S. HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol 11, 460–466 (2014). https://doi.org/10.1038/cmi.2014.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.53

Keywords

This article is cited by

Search

Quick links