Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Deciphering the transcriptional switches of innate lymphoid cell programming: the right factors at the right time

Abstract

Innate lymphoid cells (ILCs) are increasingly recognised as an innate immune counterpart of adaptive T-helper (TH) cells. In addition to their similar effector cytokine production, there is a strong parallel between the transcription factors that control the differentiation of TH1, TH2 and TH17 cells and ILC groups 1, 2 and 3, respectively. Here, we review the transcriptional circuit that specifies the development of a common ILC progenitor and its subsequent programming into distinct ILC groups. Notch, GATA-3 (GATA-binding protein 3), Nfil3 (nuclear factor interleukin-3) and Id2 (inhibitor of DNA-binding 2) are identified as early factors that suppress B- and T-cell potentials and are turned on in favour of ILC commitment. Natural killer cells, which are the cytotoxic ILCs, develop along a pathway distinct from the rest of the helper-like ILCs that are derived from a common progenitor to all helper-like ILCs (CHILPs). PLZF (promyelocytic leukaemia zinc-finger) CHILPs give rise to lymphoid tissue inducer cells, while PLZF+ CHILPs have multilineage potential and could give rise to ILCs 1, 2 and 3. Such lineage specificity is dictated by the controlled expression of T-bet (T-box expressed in T cells), RORα (retinoic acid receptor-related orphan nuclear receptor-α), RORγt (retinoic acid receptor-related orphan nuclear receptor-γt) and AHR (aryl hydrocarbon receptor). In addition to the type of transcription factors, the developmental stages at which these factors are expressed are crucial in specifying the fate of the ILCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Moore AJ, Anderson MK . Dendritic cell development: a choose-your-own-adventure story. Adv Hematol 2013; 2013: 949513.

    PubMed  PubMed Central  Google Scholar 

  2. Vosshenrich CAJ, Di Santo JP . Developmental programming of natural killer and innate lymphoid cells. Curr Opin Immunol 2013; 25: 130–138.

    CAS  PubMed  Google Scholar 

  3. Rothenberg EV . Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 2014; 32: 283–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 2013; 13: 145–149.

    CAS  PubMed  Google Scholar 

  5. Herberman RB, Nunn ME, Holden HT, Lavrin DH . Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 1975; 16: 230–239.

    CAS  PubMed  Google Scholar 

  6. Kiessling R, Klein E, Pross H, Wigzell H . ‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 1975; 5: 117–121.

    CAS  PubMed  Google Scholar 

  7. Mebius RE, Rennert P, Weissman IL . Developing lymph nodes collect CD4+CD3− LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997; 7: 493–504.

    CAS  PubMed  Google Scholar 

  8. Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S, Maki K et al. IL-7 receptor alpha+ CD3(−) cells in the embryonic intestine induces the organizing center of Peyer's patches. Int Immunol 1999; 11: 643–655.

    CAS  PubMed  Google Scholar 

  9. Hazenberg MD, Spits H . Human innate lymphoid cells. Blood 2014; 124: 700–709.

    CAS  PubMed  Google Scholar 

  10. Spits H, Di Santo JP . The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 2011; 12: 21–27.

    CAS  PubMed  Google Scholar 

  11. Walker JA, Barlow JL, McKenzie ANJ . nri3349. Nat Rev Immunol 2013; 13: 75–87.

    CAS  PubMed  Google Scholar 

  12. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 2010; 363: 1211–1221.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Savenije OE, Mahachie John JM, Granell R, Kerkhof M, Dijk FN, de Jongste JC et al. Association of IL33-IL-1 receptor-like 1 (IL1RL1) pathway polymorphisms with wheezing phenotypes and asthma in childhood. J Allergy Clin Immunol 2014; 134: 170–177.

    CAS  PubMed  Google Scholar 

  14. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010; 464: 1371–1375.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Geremia A, Arancibia-Cárcamo CV, Fleming MPP, Rust N, Singh B, Mortensen NJ et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med 2011; 208: 1127–1133.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Takayama T, Kamada N, Chinen H, Okamoto S, Kitazume MT, Chang J et al. Imbalance of NKp44(+)NKp46(−) and NKp44(−)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology 2010; 139: 882–892; e1-e3.

    CAS  PubMed  Google Scholar 

  17. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–1463.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 2013; 5: 170ra16.

    PubMed  PubMed Central  Google Scholar 

  19. Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Velde Te A et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol 2014; 134: 2351–2360.

    CAS  PubMed  Google Scholar 

  20. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010; 463: 540–544.

    CAS  PubMed  Google Scholar 

  21. Satoh-Takayama N, Lesjean-Pottier S, Vieira P, Sawa S, Eberl G, Vosshenrich CAJ et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-dependent precursors. J Exp Med 2010; 207: 273–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999; 397: 702–706.

    CAS  PubMed  Google Scholar 

  23. Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014; 157: 340–356.

    CAS  PubMed  Google Scholar 

  24. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A . A committed precursor to innate lymphoid cells. Nature 2014; 508: 397–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 2014; 40: 378–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 2014; 211: 1733–1740.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernink JH, Peters CP, Munneke M, Velde te AA, Meijer SL, Weijer K et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 2013; 14: 221–229.

    CAS  PubMed  Google Scholar 

  28. Klose CSN, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 2013; 494: 261–265.

    CAS  PubMed  Google Scholar 

  29. Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 2010; 33: 736–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 2013; 38: 769–781.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 2012; 36: 55–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lauwerys BR, Renauld JC, Houssiau FA . Synergistic proliferation and activation of natural killer cells by interleukin 12 and interleukin 18. Cytokine 1999; 11: 822–830.

    CAS  PubMed  Google Scholar 

  33. Vosshenrich CAJ, García-Ojeda ME, Samson-Villéger SI, Pasqualetto V, Enault L, Richard-Le Goff O et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 2006; 7: 1217–1224.

    CAS  PubMed  Google Scholar 

  34. Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002; 100: 3633–3638.

    CAS  PubMed  Google Scholar 

  35. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mrózek E, Anderson P, Caligiuri MA . Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1996; 87: 2632–2640.

    PubMed  Google Scholar 

  37. Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA et al. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 2004; 20: 477–494.

    CAS  PubMed  Google Scholar 

  38. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moretta L, Moretta A . Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 2004; 23: 255–259.

    CAS  PubMed  Google Scholar 

  40. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001; 409: 1055–1060.

    CAS  PubMed  Google Scholar 

  41. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19: 197–223.

    CAS  PubMed  Google Scholar 

  42. Walzer T, Bléry M, Chaix J, Fuseri N, Chasson L, Robbins SH et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA 2007; 104: 3384–3389.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Moroso V, Famili F, Papazian N, Cupedo T, van der Laan LJW, Kazemier G et al. NK cells can generate from precursors in the adult human liver. Eur J Immunol 2011; 41: 3340–3350.

    CAS  PubMed  Google Scholar 

  44. Takeda K, Cretney E, Hayakawa Y, Ota T, Akiba H, Ogasawara K et al. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 2005; 105: 2082–2089.

    CAS  PubMed  Google Scholar 

  45. Sánchez MJ, Spits H, Lanier LL, Phillips JH . Human natural killer cell committed thymocytes and their relation to the T cell lineage. J Exp Med 1993; 178: 1857–1866.

    PubMed  Google Scholar 

  46. Freud AG, Becknell B, Roychowdhury S, Mao HC, Ferketich AK, Nuovo GJ et al. A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 2005; 22: 295–304.

    CAS  PubMed  Google Scholar 

  47. Veinotte LL, Halim TYF, Takei F . Unique subset of natural killer cells develops from progenitors in lymph node. Blood 2008; 111: 4201–4208.

    CAS  PubMed  Google Scholar 

  48. Gotthardt D, Prchal-Murphy M, Seillet C, Glasner A, Mandelboim O, Carotta S et al. NK cell development in bone marrow and liver: site matters. Genes Immun 2014; 15: 584–587.

    CAS  PubMed  Google Scholar 

  49. Kim S, Iizuka K, Kang H-SP, Dokun A, French AR, Greco S et al. In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 2002; 3: 523–528.

    PubMed  Google Scholar 

  50. Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A, Di Santo JP . Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 2001; 31: 1900–1909.

    CAS  PubMed  Google Scholar 

  51. Aliahmad P, la Torre de B, Kaye J . Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 2010; 11: 945–952.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Boos MD, Yokota Y, Eberl G, Kee BL . Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 2007; 204: 1119–1130.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 2009; 10: 1118–1124.

    CAS  PubMed  Google Scholar 

  54. Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 2009; 206: 2977–2986.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Freud AG, Yokohama A, Becknell B, Lee MT, Mao HC, Ferketich AK et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 2006; 203: 1033–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    CAS  PubMed  Google Scholar 

  57. Michie AM, Carlyle JR, Schmitt TM, Ljutic B, Cho SK, Fong Q et al. Clonal characterization of a bipotent T cell and NK cell progenitor in the mouse fetal thymus. J Immunol 2000; 164: 1730–1733.

    CAS  PubMed  Google Scholar 

  58. Sánchez MJ, Muench MO, Roncarolo MG, Lanier LL, Phillips JH . Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med 1994; 180: 569–576.

    PubMed  Google Scholar 

  59. Veinotte LL, Greenwood CP, Mohammadi N, Parachoniak CA, Takei F . Expression of rearranged TCRgamma genes in natural killer cells suggests a minor thymus-dependent pathway of lineage commitment. Blood 2006; 107: 2673–2679.

    CAS  PubMed  Google Scholar 

  60. Li L, Leid M, Rothenberg EV . An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 2010; 329: 89–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li P, Burke S, Wang J, Chen X, Ortiz M, Lee S-C et al. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 2010; 329: 85–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Grégoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E et al. The trafficking of natural killer cells. Immunol Rev 2007; 220: 169–182.

    PubMed  PubMed Central  Google Scholar 

  63. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010; 464: 1367–1370.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Price AE, Liang H-E, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA 2010; 107: 11489–11494.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 2012; 129 191–8 e1–e4.

    Google Scholar 

  66. Halim TYF, Krauss RH, Sun AC, Takei F . Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 2012; 36: 451–463.

    CAS  PubMed  Google Scholar 

  67. Hoyler T, Klose CSN, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012; 37: 634–648.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P, Zhang J et al. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol 2014; 7: 730–740.

    CAS  PubMed  Google Scholar 

  69. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK, Doering TA et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12: 1045–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang Y-J, Kim HY, Albacker LA, Baumgarth N, McKenzie ANJ, Smith DE et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 2011; 12: 631–638.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gorski SA, Hahn YS, Braciale TJ . Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog 2013; 9: e1003615.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hong JY, Bentley JK, Chung Y, Lei J, Steenrod JM, Chen Q et al. Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol 2014; 134: 429–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011; 12: 1055–1062.

    PubMed  Google Scholar 

  74. Halim TYF, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F . Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 2012; 37: 463–474.

    CAS  PubMed  Google Scholar 

  75. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A et al. Transcription factor RORα is critical for nuocyte development. Nat Immunol 2012; 13: 229–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mjösberg J, Bernink J, Golebski K, Karrich JJ, Peters CP, Blom B et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 2012; 37: 649–659.

    PubMed  Google Scholar 

  77. Lee Y, Kumagai Y, Jang MS, Kim J-H, Yang B-G, Lee E-J et al. Intestinal Lin- c-Kit+ NKp46- CD4- population strongly produces IL-22 upon IL-1β stimulation. J Immunol 2013; 190: 5296–5305.

    CAS  PubMed  Google Scholar 

  78. Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 2009; 10: 75–82.

    CAS  PubMed  Google Scholar 

  79. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009; 10: 83–91.

    CAS  PubMed  Google Scholar 

  80. Satoh-Takayama N, Vosshenrich CAJ, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008; 29: 958–970.

    CAS  PubMed  Google Scholar 

  81. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 2009; 206: 35–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S . Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 2013; 190: 521–525.

    CAS  PubMed  Google Scholar 

  83. Boyd A, Ribeiro JMC, Nutman TB . Human CD117 (cKit)+ innate lymphoid cells have a discrete transcriptional profile at homeostasis and are expanded during filarial infection. PLoS ONE 2014; 9: e108649.

    PubMed  PubMed Central  Google Scholar 

  84. Cella M, Otero K, Colonna M . Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci USA 2010; 107: 10961–10966.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Meier D, Bornmann C, Chappaz S, Schmutz S, Otten LA, Ceredig R et al. Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 2007; 26: 643–654.

    CAS  PubMed  Google Scholar 

  86. Schmutz S, Bosco N, Chappaz S, Boyman O, Acha-Orbea H, Ceredig R et al. Cutting edge: IL-7 regulates the peripheral pool of adult ROR gamma+ lymphoid tissue inducer cells. J Immunol 2009; 183: 2217–2221.

    CAS  PubMed  Google Scholar 

  87. Eberl G, Littman DR . Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science 2004; 305: 248–251.

    CAS  PubMed  Google Scholar 

  88. Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 2008; 29: 261–271.

    CAS  PubMed  Google Scholar 

  89. Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol 2008; 9: 667–675.

    CAS  PubMed  Google Scholar 

  90. Eberl G, Lochner M . The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol 2009; 2: 478–485.

    CAS  PubMed  Google Scholar 

  91. Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D . CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011; 34: 122–134.

    CAS  PubMed  Google Scholar 

  92. Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 2009; 10: 66–74.

    CAS  PubMed  Google Scholar 

  93. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JKM et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009; 457: 722–725.

    CAS  PubMed  Google Scholar 

  94. Hughes T, Becknell B, McClory S, Briercheck E, Freud AG, Zhang X et al. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH 17 cytokine interleukin-22. Blood 2009; 113: 4008–4010.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Male V, Hughes T, McClory S, Colucci F, Caligiuri MA, Moffett A . Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. J Immunol 2010; 185: 3913–3918.

    CAS  PubMed  Google Scholar 

  96. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2012; 13: 144–151.

    CAS  Google Scholar 

  97. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14: 282–289.

    CAS  PubMed  Google Scholar 

  98. Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H . Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med 2010; 207: 281–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ, Langa F et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010; 330: 665–669.

    CAS  PubMed  Google Scholar 

  100. Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol 2013; 14: 389–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cherrier M, Sawa S, Eberl G . Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med 2012; 209: 729–740.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Carotta S, Pang SHM, Nutt SL, Belz GT . Identification of the earliest NK-cell precursor in the mouse BM. Blood 2011; 117: 5449–5452.

    CAS  PubMed  Google Scholar 

  103. Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M, Brady HJM et al. Differential requirement for Nfil3 during NK cell development. J Immunol 2014; 192: 2667–2676.

    CAS  PubMed  Google Scholar 

  104. Hacker C, Kirsch RD, Ju X-S, Hieronymus T, Gust TC, Kuhl C et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 2003; 4: 380–386.

    CAS  PubMed  Google Scholar 

  105. Jackson JT, Hu Y, Liu R, Masson F, D'Amico A, Carotta S et al. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. EMBO J 2011; 30: 2690–2704.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Heemskerk MH, Blom B, Nolan G, Stegmann AP, Bakker AQ, Weijer K et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 1997; 186: 1597–1602.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun XH, Copeland NG, Jenkins NA, Baltimore D . Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 1991; 11: 5603–5611.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 1994; 79: 885–892.

    CAS  PubMed  Google Scholar 

  109. Nutt SL, Heavey B, Rolink AG, Busslinger M . Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562.

    CAS  PubMed  Google Scholar 

  110. Bain G, Engel I, Robanus Maandag EC, Riele te HP, Voland JR, Sharp LL et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17: 4782–4791.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ting CN, Olson MC, Barton KP, Leiden JM . Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996; 384: 474–478.

    CAS  PubMed  Google Scholar 

  112. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 2004; 5: 1157–1165.

    CAS  PubMed  Google Scholar 

  113. Samson SI, Richard O, Tavian M, Ranson T, Vosshenrich CAJ, Colucci F et al. GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells. Immunity 2003; 19: 701–711.

    CAS  PubMed  Google Scholar 

  114. Serafini N, Klein Wolterink RGJ, Satoh-Takayama N, Xu W, Vosshenrich CAJ, Hendriks RW et al. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J Exp Med 2014; 211: 199–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rothenberg EV . Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 2012; 24: 132–138.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bray SJ . Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7: 678–689.

    CAS  PubMed  Google Scholar 

  117. Possot C, Schmutz S, Chea S, Boucontet L, Louise A, Cumano A et al. Notch signaling is necessary for adult, but not fetal, development of RORγt(+) innate lymphoid cells. Nat Immunol 2011; 12: 949–958.

    CAS  PubMed  Google Scholar 

  118. Ribeiro VSG, Hasan M, Wilson A, Boucontet L, Pereira P, Lesjean-Pottier S et al. Cutting edge: Thymic NK cells develop independently from T cell precursors. J Immunol 2010; 185: 4993–4997.

    CAS  PubMed  Google Scholar 

  119. Yang Q, Monticelli LA, Saenz SA, AW-S Chi, Sonnenberg GF, Tang J et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 2013; 38: 694–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011; 334: 1561–1565.

    CAS  PubMed  Google Scholar 

  121. Qiu J, Heller JJ, Guo X, Chen Z-ME, Fish K, Fu Y-X et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012; 36: 92–104.

    CAS  PubMed  Google Scholar 

  122. Mielke LA, Groom JR, Rankin LC, Seillet C, Masson F, Putoczki T et al. TCF-1 controls ILC2 and NKp46+RORγt+ innate lymphocyte differentiation and protection in intestinal inflammation. J Immunol 2013; 191: 4383–4391.

    CAS  PubMed  Google Scholar 

  123. Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karsunky H, Weissman IL . Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 2011; 118: 5439–5447.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Male V, Nisoli I, Kostrzewski T, Allan DSJ, Carlyle JR, Lord GM et al. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 2014; 211: 635–642.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Geiger TL, Abt MC, Gasteiger G, Firth MA, O'Connor MH, Geary CD et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J Exp Med 2014; 211: 1723–1731.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 2008; 29: 391–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH . A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100: 655–669.

    CAS  PubMed  Google Scholar 

  128. Powell N, Walker AW, Stolarczyk E, Canavan JB, Gökmen MR, Marks E et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 2012; 37: 674–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K et al. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 1996; 379: 736–739.

    CAS  PubMed  Google Scholar 

  130. Halim TYF, Steer CA, Mathä L, Gold MJ, Martinez-Gonzalez I, McNagny KM et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 2014; 40: 425–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Eberl G, Marmon S, Sunshine M-J, Rennert PD, Choi Y, Littman DR . An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2004; 5: 64–73.

    CAS  PubMed  Google Scholar 

  132. Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F et al. Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA 2000; 97: 10132–10137.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 2000; 288: 2369–2373.

    CAS  PubMed  Google Scholar 

  134. He YW, Deftos ML, Ojala EW, Bevan MJ . RORgamma t, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 1998; 9: 797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126: 1121–1133.

    CAS  PubMed  Google Scholar 

  136. Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28: 29–39.

    CAS  PubMed  Google Scholar 

  137. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8: 967–974.

    CAS  PubMed  Google Scholar 

  138. Stevens EA, Mezrich JD, Bradfield CA . The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 2009; 127: 299–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008; 453: 106–109.

    CAS  PubMed  Google Scholar 

  140. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011; 147: 629–640.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A N J McKenzie.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, A., McKenzie, A. Deciphering the transcriptional switches of innate lymphoid cell programming: the right factors at the right time. Genes Immun 16, 177–186 (2015). https://doi.org/10.1038/gene.2014.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.83

This article is cited by

Search

Quick links