Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Quantitative fine-tuning of photoreceptor cis-regulatory elements through affinity modulation of transcription factor binding sites

Abstract

Given the remarkable recent progress in gene therapy-based treatments for retinal disease, there is an urgent need for the development of new approaches to quantitative design and analysis of photoreceptor-specific promoters. In this study, we determined the relative binding affinity of all single-nucleotide variants of the consensus binding site of the mammalian photoreceptor transcription factor, Crx. We then showed that it is possible to use these data to accurately predict the relative binding affinity of Crx for all possible 8 bp sequences. By rationally adjusting the binding affinity of three Crx sites, we were able to fine-tune the expression of the rod-specific Rhodopsin promoter over a 225-fold range in living retinas. In addition, we showed that it is possible to fine-tune the activity of the rod-specific Gnat1 promoter over 275-fold range by modulating the affinity of a single Crx-binding site. We found that the action of individual binding sites depends on the precise promoter context of the site and that increasing binding affinity does not always equate with increased promoter output. Despite these caveats, this tuning approach permits quantitative engineering of photoreceptor-specific cis-regulatory elements, which can be used as drivers in gene therapy vectors for the treatment of blindness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Davidson EH . The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic Press: London, 2006.

    Google Scholar 

  2. Davidson EH . Genomic Regulatory Systems: Development and Evolution, 1st edn. Academic Press: San Diego, 2001.

    Google Scholar 

  3. Blackshaw S, Fraioli RE, Furukawa T, Cepko CL . Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 2001; 107: 579–589.

    Article  CAS  PubMed  Google Scholar 

  4. Hsiau TH, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC . The cis-regulatory logic of the mammalian photoreceptor transcriptional network. PLoS ONE 2007; 2: e643.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Dinculescu A, Glushakova L, Min SH, Hauswirth WW . Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 2005; 16: 649–663.

    Article  CAS  PubMed  Google Scholar 

  6. Bainbridge JW . Gene therapy clinical trials for inherited eye disease. Exp Rev Ophthalmol 2007; 2: 517–519.

    Article  CAS  Google Scholar 

  7. Montana CL, Corbo JC . Inherited diseases of photoreceptors and prospects for gene therapy. Pharmacogenomics 2008; 9: 335–347.

    Article  CAS  PubMed  Google Scholar 

  8. Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12: 189–211.

    Article  CAS  PubMed  Google Scholar 

  9. Corbo JC . The role of cis-regulatory elements in the design of gene therapy vectors for inherited blindness. Expert Opin Biol Ther 2008; 8: 599–608.

    Article  CAS  PubMed  Google Scholar 

  10. Yu J, He S, Friedman JS, Akimoto M, Ghosh D, Mears AJ et al. Altered expression of genes of the Bmp/Smad and Wnt/calcium signaling pathways in the cone-only Nrl−/− mouse retina, revealed by gene profiling using custom cDNA microarrays. J Biol Chem 2004; 279: 42211–42220.

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida S, Mears AJ, Friedman JS, Carter T, He S, Oh E et al. Expression profiling of the developing and mature Nrl−/− mouse retina: identification of retinal disease candidates and transcriptional regulatory targets of Nrl. Hum Mol Genet 2004; 13: 1487–1503.

    Article  CAS  PubMed  Google Scholar 

  12. Peng GH, Ahmad O, Ahmad F, Liu J, Chen S . The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 2005; 14: 747–764.

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Rattner A, Nathans J . The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes. J Neurosci 2005; 25: 118–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Corbo JC, Cepko CL . A hybrid photoreceptor expressing both rod and cone genes in a mouse model of enhanced s-cone syndrome. PLoS Genet 2005; 1: e11.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Livesey FJ, Furukawa T, Steffen MA, Church GM, Cepko CL . Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx. Curr Biol 2000; 10: 301–310.

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 1997; 19: 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  17. Furukawa T, Morrow EM, Cepko CL . Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 1997; 91: 531–541.

    Article  CAS  PubMed  Google Scholar 

  18. Freund CL, Gregory-Evans CY, Furukawa T, Papaioannou M, Looser J, Ploder L et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 1997; 91: 543–553.

    Article  CAS  PubMed  Google Scholar 

  19. Freund CL, Wang QL, Chen S, Muskat BL, Wiles CD, Sheffield VC et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis [letter]. Nat Genet 1998; 18: 311–312.

    Article  CAS  PubMed  Google Scholar 

  20. Jacobson SG, Cideciyan AV, Huang Y, Hanna DB, Freund CL, Affatigato LM et al. Retinal degenerations with truncation mutations in the cone-rod homeobox (CRX) gene. Invest Ophthalmol Vis Sci 1998; 39: 2417–2426.

    CAS  PubMed  Google Scholar 

  21. Sohocki MM, Sullivan LS, Mintz-Hittner HA, Birch D, Heckenlively JR, Freund CL et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet 1998; 63: 1307–1315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL . Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 1999; 23: 466–470.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Q, Ji X, Breitman ML, Hitchcock PF, Swaroop A . Expression of the bZIP transcription factor gene Nrl in the developing nervous system. Oncogene 1996; 12: 207–211.

    CAS  PubMed  Google Scholar 

  24. Swain PK, Hicks D, Mears AJ, Apel IJ, Smith JE, John SK et al. Multiple phosphorylated isoforms of NRL are expressed in rod photoreceptors. J Biol Chem 2001; 276: 36824–36830.

    Article  CAS  PubMed  Google Scholar 

  25. Swaroop A, Xu JZ, Pawar H, Jackson A, Skolnick C, Agarwal N . A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proc Natl Acad Sci USA 1992; 89: 266–270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bessant DA, Payne AM, Mitton KP, Wang QL, Swain PK, Plant C et al. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat Genet 1999; 21: 355–356.

    Article  CAS  PubMed  Google Scholar 

  27. DeAngelis MM, Grimsby JL, Sandberg MA, Berson EL, Dryja TP . Novel mutations in the NRL gene and associated clinical findings in patients with dominant retinitis pigmentosa. Arch Ophthalmol 2002; 120: 369–375.

    Article  CAS  PubMed  Google Scholar 

  28. Daniele LL, Lillo C, Lyubarsky AL, Nikonov SS, Philp N, Mears AJ et al. Cone-like morphological, molecular, and electrophysiological features of the photoreceptors of the Nrl knockout mouse. Invest Ophthalmol Vis Sci 2005; 46: 2156–2167.

    Article  PubMed  Google Scholar 

  29. Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL et al. Nrl is required for rod photoreceptor development. Nat Genet 2001; 29: 447–452.

    Article  CAS  PubMed  Google Scholar 

  30. Corbo JC, Myers CA, Lawrence KA, Jadhav AP, Cepko CL . A typology of photoreceptor gene expression patterns in the mouse. Proc Natl Acad Sci USA 2007; 104: 12069–12074.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Akhmedov NB, Piriev NI, Chang B, Rapoport AL, Hawes NL, Nishina PM et al. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc Natl Acad Sci USA 2000; 97: 5551–5556.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C et al. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 2000; 24: 127–131.

    Article  CAS  PubMed  Google Scholar 

  33. Haider NB, Naggert JK, Nishina PM . Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet 2001; 10: 1619–1626.

    Article  CAS  PubMed  Google Scholar 

  34. Kobayashi M, Takezawa S, Hara K, Yu RT, Umesono Y, Agata K et al. Identification of a photoreceptor cell-specific nuclear receptor. Proc Natl Acad Sci USA 1999; 96: 4814–4819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX, Gupta N et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci USA 2002; 99: 473–478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Man TK, Yang JS, Stormo GD . Quantitative modeling of DNA-protein interactions: effects of amino acid substitutions on binding specificity of the Mnt repressor. Nucleic Acids Res 2004; 32: 4026–4032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Man TK, Stormo GD . Non-independence of Mnt repressor-operator interaction determined by a new quantitative multiple fluorescence relative affinity (QuMFRA) assay. Nucleic Acids Res 2001; 29: 2471–2478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chatelain G, Fossat N, Brun G, Lamonerie T . Molecular dissection reveals decreased activity and not dominant negative effect in human OTX2 mutants. J Mol Med 2006; 84: 604–615.

    Article  CAS  PubMed  Google Scholar 

  39. Morozov AV, Havranek JJ, Baker D, Siggia ED . Protein-DNA binding specificity predictions with structural models. Nucleic Acids Res 2005; 33: 5781–5798.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Little EJ, Babic AC, Horton NC . Early interrogation and recognition of DNA sequence by indirect readout. Structure 2008; 16: 1828–1837.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Benos PV, Bulyk ML, Stormo GD . Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res 2002; 30: 4442–4451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Pena-Castillo L et al. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell 2008; 133: 1266–1276.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zack DJ, Bennett J, Wang Y, Davenport C, Klaunberg B, Gearhart J et al. Unusual topography of rhodopsin promoter-lacZ fusion gene expression in transgenic mouse retinas. Neuron 1991; 6: 187–199.

    Article  CAS  PubMed  Google Scholar 

  44. Lem J, Applebury ML, Falk JD, Flannery JG, Simon MI . Tissue-specific and developmental regulation of rodopsin chimeric genes in transgenic mice. Neuron 1991; 6: 201–210.

    Article  CAS  PubMed  Google Scholar 

  45. Dryja TP, Hahn LB, Reboul T, Arnaud B . Missense mutation in the gene encoding the alpha subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet 1996; 13: 358–360.

    Article  CAS  PubMed  Google Scholar 

  46. Scully KM, Jacobson EM, Jepsen K, Lunyak V, Viadiu H, Carriere C et al. Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science 2000; 290: 1127–1131.

    Article  CAS  PubMed  Google Scholar 

  47. Leung TH, Hoffmann A, Baltimore D . One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 2004; 118: 453–464.

    Article  CAS  PubMed  Google Scholar 

  48. Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR . DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 2009; 324: 407–410.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP et al. Genomic analysis of mouse retinal development. PLoS Biol 2004; 2: E247.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Badis G, Berger MF, Philippakis AA, Talukder S, Gehrke AR, Jaeger SA et al. Diversity and complexity in DNA recognition by transcription factors. Science 2009; 324: 1720–1723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA . Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell 2008; 133: 1277–1289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Workman CT, Yin Y, Corcoran DL, Ideker T, Stormo GD, Benos PV . enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res 2005; 33: W389–W392; Web Server issue.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005; 15: 1034–1050.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR et al. The UCSC Genome Browser Database: update 2009. Nucleic Acids Res 2009; 37: D755–D761; Database issue.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G Stormo and colleagues for their advice on the QuMFRA assay and for permitting us to use their Typhoon scanner. We also thank the other members of the Corbo lab for their comments and thank C Montana for carefully reading the paper. This work was supported by Grant R01 EY018826 from NIH/NEI and by grants from the McDonnell Center for Cellular and Molecular Neurobiology and from the American Health Assistance Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Corbo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Myers, C., Williams, N. et al. Quantitative fine-tuning of photoreceptor cis-regulatory elements through affinity modulation of transcription factor binding sites. Gene Ther 17, 1390–1399 (2010). https://doi.org/10.1038/gt.2010.77

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.77

Keywords

This article is cited by

Search

Quick links