Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Enabling Technologies
  • Published:

Bioprocess development for canine adenovirus type 2 vectors

Abstract

Canine adenovirus type 2 (CAV-2) vectors overcome many of the clinical immunogenic concerns related to vectors derived from human adenoviruses (AdVs). In addition, CAV-2 vectors preferentially transduce neurons with an efficient traffic via axons to afferent regions when injected into the brain. To meet the need for preclinical and possibly clinical uses, scalable and robust production processes are required. CAV-2 vectors are currently produced in E1-transcomplementing dog kidney (DK) cells, which might raise obstacles in regulatory approval for clinical grade material production. In this study, a GMP-compliant bioprocess was developed. An MDCK-E1 cell line, developed by our group, was grown in scalable stirred tank bioreactors, using serum-free medium, and used to produce CAV-2 vectors that were afterwards purified using column chromatographic steps. Vectors produced in MDCK-E1 cells were identical to those produced in DK cells as assessed by SDS-PAGE and dynamic light scatering measurements (diameter and Zeta potential). Productivities of 109 infectious particles (IP) ml−1 and 2 × 103 IP per cell were possible. A downstream process using technologies transferable to process scales was developed, yielding 63% global recovery. The total particles to IP ratio in the purified product (<20:1) was within the limits specified by the regulatory authorities for AdV vectors. These results constitute a step toward a scalable process for CAV-2 vector production compliant with clinical material specifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dormond E, Perrier M, Kamen A . From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnol Adv 2009; 27: 133–144.

    Article  CAS  PubMed  Google Scholar 

  2. Kremer EJ, Boutin S, Chillon M, Danos O . Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 2000; 74: 505–512.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Perreau M, Kremer EJ . Frequency, proliferation, and activation of human memory T cells induced by a nonhuman adenovirus. J Virol 2005; 79: 14595–14605.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Soudais C, Boutin S, Kremer EJ . Characterization of cis-acting sequences involved in canine adenovirus packaging. Mol Ther 2001; 3: 631–640.

    Article  CAS  PubMed  Google Scholar 

  5. Bru T, Salinas S, Kremer EJ . An update on canine adenovirus type 2 and its vectors. Viruses 2010; 2: 2134–2153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ . Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. Faseb J 2001; 15: 2283–2285.

    Article  CAS  PubMed  Google Scholar 

  7. Falkner E, Appl H, Eder C, Losert UM, Schoffl H, Pfaller W . Serum free cell culture: the free access online database. Toxicol In Vitro 2006; 20: 395–400.

    Article  CAS  PubMed  Google Scholar 

  8. Armendariz-Borunda J, Bastidas-Ramirez BE, Sandoval-Rodriguez A, Gonzalez-Cuevas J, Gomez-Meda B, Garcia-Banuelos J . Production of first generation adenoviral vectors for preclinical protocols: amplification, purification and functional titration. J Biosci Bioeng 2011; 112: 415–421.

    Article  CAS  PubMed  Google Scholar 

  9. Eglon M, McGrath B, O'Brien T . HPLC purification of adenoviral vectors. Methods Mol Biol 2010; 594: 395–408.

    Article  CAS  PubMed  Google Scholar 

  10. Eglon MN, Duffy AM, O'Brien T, Strappe PM . Purification of adenoviral vectors by combined anion exchange and gel filtration chromatography. J Gene Med 2009; 11: 978–989.

    Article  CAS  PubMed  Google Scholar 

  11. Forcic D, Brgles M, Ivancic-Jelecki J, Santak M, Halassy B, Barut M et al. Concentration and purification of rubella virus using monolithic chromatographic support. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879: 981–986.

    Article  CAS  PubMed  Google Scholar 

  12. Iyer G, Ramaswamy S, Asher D, Mehta U, Leahy A, Chung F et al. Reduced surface area chromatography for flow-through purification of viruses and virus like particles. J Chromatogr A 2011; 1218: 3973–3981.

    Article  CAS  PubMed  Google Scholar 

  13. Genzel Y, Fischer M, Reichl U . Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture. Vaccine 2006; 24: 3261–3272.

    Article  CAS  PubMed  Google Scholar 

  14. Tree JA, Richardson C, Fooks AR, Clegg JC, Looby D . Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine 2001; 19: 3444–3450.

    Article  CAS  PubMed  Google Scholar 

  15. Genzel Y, Behrendt I, Konig S, Sann H, Reichl U . Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine 2004; 22: 2202–2208.

    Article  CAS  PubMed  Google Scholar 

  16. Genzel Y, Ritter JB, Konig S, Alt R, Reichl U . Substitution of glutamine by pyruvate to reduce ammonia formation and growth inhibition of mammalian cells. Biotechnol Prog 2005; 21: 58–69.

    Article  CAS  PubMed  Google Scholar 

  17. Chillon M, Kremer EJ . Trafficking and propagation of canine adenovirus vectors lacking a known integrin-interacting motif. Hum Gene Ther 2001; 12: 1815–1823.

    Article  CAS  PubMed  Google Scholar 

  18. Nadeau I, Kamen A . Production of adenovirus vector for gene therapy. Biotechnol Adv 2003; 20: 475–489.

    Article  CAS  PubMed  Google Scholar 

  19. Ferreira TB, Ferreira AL, Carrondo MJ, Alves PM . Effect of re-feed strategies and non-ammoniagenic medium on adenovirus production at high cell densities. J Biotechnol 2005; 119: 272–280.

    Article  CAS  PubMed  Google Scholar 

  20. Altaras NE, Aunins JG, Evans RK, Kamen A, Konz JO, Wolf JJ . Production and formulation of adenovirus vectors. Adv Biochem Eng Biotechnol 2005; 99: 193–260.

    CAS  PubMed  Google Scholar 

  21. Kamen A, Henry O . Development and optimization of an adenovirus production process. J Gene Med 2004; 6: 184–192.

    Article  Google Scholar 

  22. Schoehn G, El Bakkouri M, Fabry CM, Billet O, Estrozi LF, Le L et al. Three-dimensional structure of canine adenovirus serotype 2 capsid. J Virol 2008; 82: 3192–3203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Segura MM, Kamen AA, Garnier A . Overview of current scalable methods for purification of viral vectors. Methods Mol Biol 2011; 737: 89–116.

    Article  CAS  PubMed  Google Scholar 

  24. Silva AC, Peixoto C, Lucas T, Kuppers C, Cruz PE, Alves PM et al. Adenovirus vector production and purification. Curr Gene Ther 2010; 10: 437–455.

    Article  CAS  PubMed  Google Scholar 

  25. Lusky M . Good manufacturing practice production of adenoviral vectors for clinical trials. Hum Gene Ther 2005; 16: 281–291.

    Article  CAS  PubMed  Google Scholar 

  26. Peixoto C, Ferreira TB, Sousa MF, Carrondo MJ, Alves PM . Towards purification of adenoviral vectors based on membrane technology. Biotechnol Prog 2008; 24: 1290–1296.

    Article  CAS  PubMed  Google Scholar 

  27. Goerke AR, To BC, Lee AL, Sagar SL, Konz JO . Development of a novel adenovirus purification process utilizing selective precipitation of cellular DNA. Biotechnol Bioeng 2005; 91: 12–21.

    Article  CAS  PubMed  Google Scholar 

  28. Klonjkowski B, Gilardi-Hebenstreit P, Hadchouel J, Randrianarison V, Boutin S, Yeh P et al. A recombinant E1-deleted canine adenoviral vector capable of transduction and expression of a transgene in human-derived cells and in vivo. Human Gene Ther 1997; 8: 2103–2115.

    Article  CAS  Google Scholar 

  29. Ferreira TB, Perdigao R, Silva AC, Zhang C, Aunins JG, Carrondo MJ et al. 293 cell cycle synchronisation adenovirus vector production. Biotechnol Prog 2009; 25: 235–243.

    Article  CAS  PubMed  Google Scholar 

  30. Soudais C, Skander N, Kremer EJ . Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. FASEB J 2004; 18: 391–393.

    Article  CAS  PubMed  Google Scholar 

  31. Segura MM, Monfar M, Puig M, Mennechet F, Ibanes S, Chillon M . A real-time PCR assay for quantification of canine adenoviral vectors. J Virol Methods 2010; 163: 129–136.

    Article  CAS  PubMed  Google Scholar 

  32. Salinas S, Bilsland LG, Henaff D, Weston AE, Keriel A, Schiavo G et al. CAR-associated vesicular transport of an adenovirus in motor neuron axons. PLoS pathogens 2009; 5: e1000442.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundação para a Ciência e Tecnologia (FCT)—Portugal (through the projects PTDC/BIO/69452/2006, PTDC/EBB-BIO/119501/2010 and PTDC/EBB-BIO/118615/2010) and the European Commission (BrainCAV HEALTH – HS_2008_222992). Paulo Fernandes acknowledges the FCT for his PhD grant (SFRH/BD/70810/2010). We acknowledge Eng. Marcos Sousa for the technical support in bioreaction. We also acknowledge the Sartorius Stedim Biotech for providing the membranes, the BIA Separations for providing the monolithic columns, the GE Healthcare for providing the core bead prototype matrix and for the technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P M Alves.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, P., Peixoto, C., Santiago, V. et al. Bioprocess development for canine adenovirus type 2 vectors. Gene Ther 20, 353–360 (2013). https://doi.org/10.1038/gt.2012.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.52

Keywords

This article is cited by

Search

Quick links