Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection

Abstract

Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0–2–4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0–3–6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 105 B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0–3–6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Stanek G, Reiter M . The expanding Lyme Borrelia complex—clinical significance of genomic species?. Clin Microbiol Infect 2011; 17: 487–493.

    Article  CAS  Google Scholar 

  2. Stanek G, Wormser GP, Gray J, Strle F . Lyme borreliosis. Lancet 2012; 379: 461–473.

    Article  Google Scholar 

  3. Radolf JD, Caimano MJ, Stevenson B, Hu LT . Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 2012; 10: 87–99.

    Article  CAS  Google Scholar 

  4. Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA et al. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 2004; 113: 220–230.

    Article  CAS  Google Scholar 

  5. Grimm D, Tilly K, Byram R, Stewart PE, Krum JG, Bueschel DM et al. Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci USA 2004; 101: 3142–3147.

    Article  CAS  Google Scholar 

  6. Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 2005; 436: 573–577.

    Article  CAS  Google Scholar 

  7. Hovius JW, Schuijt TJ, de Groot KA, Roelofs JJ, Oei GA, Marquart JA et al. Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva. J Infect Dis 2008; 198: 1189–1197.

    Article  CAS  Google Scholar 

  8. Poland GA . Vaccines against Lyme disease: what happened and what lessons can we learn?. Clin Infect Dis 2011; 52: s253–s258.

    Article  Google Scholar 

  9. Schuijt TJ, Hovius JW, van der Poll T, van Dam AP, Fikrig E . Lyme borreliosis vaccination: the facts, the challenge, the future. Trends Parasitol 2011; 27: 40–47.

    Article  CAS  Google Scholar 

  10. Luke CJ, Carner K, Liang X, Barbour AG . An OspA-based DNA vaccine protects mice against infection with Borrelia burgdorferi. J Infect Dis 1997; 175: 91–97.

    Article  CAS  Google Scholar 

  11. Scheiblhofer S, Weiss R, Durnberger H, Mostbock S, Breitenbach M, Livey I et al. A DNA vaccine encoding the outer surface protein C from Borrelia burgdorferi is able to induce protective immune responses. Microbes Infect 2003; 5: 939–946.

    Article  CAS  Google Scholar 

  12. Weiss R, Durnberger J, Mostbock S, Scheiblhofer S, Hartl A, Breitenbach M et al. Improvement of the immune response against plasmid DNA encoding OspC of Borrelia by an ER-targeting leader sequence. Vaccine 1999; 18: 815–824.

    Article  CAS  Google Scholar 

  13. Weiss R, Scheiblhofer S, Freund J, Ferreira F, Livey I, Thalhamer J . Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 2002; 20: 3148–3154.

    Article  CAS  Google Scholar 

  14. Bins AD, Jorritsma A, Wolkers MC, Hung CF, Wu TC, Schumacher TN et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat Med 2005; 11: 899–904.

    Article  CAS  Google Scholar 

  15. Zhong W, Gern L, Stehle T, Museteanu C, Kramer M, Wallich R et al. Resolution of experimental and tick-borne Borrelia burgdorferi infection in mice by passive, but not active immunization using recombinant OspC. Eur J Immunol 1999; 29: 946–957.

    Article  CAS  Google Scholar 

  16. Zhong W, Stehle T, Museteanu C, Siebers A, Gern L, Kramer M et al. Therapeutic passive vaccination against chronic Lyme disease in mice. Proc Natl Acad Sci USA 1997; 94: 12533–12538.

    Article  CAS  Google Scholar 

  17. Dangl JL, Wensel TG, Morrison SL, Stryer L, Herzenberg LA, Oi VT . Segmental flexibility and complement fixation of genetically engineered chimeric human, rabbit and mouse antibodies. EMBO J 1988; 7: 1989–1994.

    Article  CAS  Google Scholar 

  18. Earnhart CG, Marconi RT . Construction and analysis of variants of a polyvalent Lyme disease vaccine: approaches for improving the immune response to chimeric vaccinogens. Vaccine 2007; 25: 3419–3427.

    Article  CAS  Google Scholar 

  19. Keane-Myers A, Nickell SP . Role of IL-4 and IFN-gamma in modulation of immunity to Borrelia burgdorferi in mice. J Immunol 1995; 155: 2020–2028.

    CAS  PubMed  Google Scholar 

  20. Matyniak JE, Reiner SL . T helper phenotype and genetic susceptibility in experimental Lyme disease. J Exp Med 1995; 181: 1251–1254.

    Article  CAS  Google Scholar 

  21. Zeidner N, Dreitz M, Belasco D, Fish D . Suppression of acute Ixodes scapularis-induced Borrelia burgdorferi infection using tumor necrosis factor-alpha, interleukin-2, and interferon-gamma. J Infect Dis 1996; 173: 187–195.

    Article  CAS  Google Scholar 

  22. Earnhart CG, Buckles EL, Dumler JS, Marconi RT . Demonstration of OspC type diversity in invasive human lyme disease isolates and identification of previously uncharacterized epitopes that define the specificity of the OspC murine antibody response. Infect Immun 2005; 73: 7869–7877.

    Article  CAS  Google Scholar 

  23. Earnhart CG, Marconi RT . OspC phylogenetic analyses support the feasibility of a broadly protective polyvalent chimeric Lyme disease vaccine. Clin Vaccine Immunol 2007; 14: 628–634.

    Article  CAS  Google Scholar 

  24. Wang IN, Dykhuizen DE, Qiu W, Dunn JJ, Bosler EM, Luft BJ . Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics 1999; 151: 15–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Probert WS, Crawford M, Cadiz RB, LeFebvre RB . Immunization with outer surface protein (Osp) A, but not OspC, provides cross-protection of mice challenged with North American isolates of Borrelia burgdorferi. J Infect Dis 1997; 175: 400–405.

    Article  CAS  Google Scholar 

  26. Hovius JW . Spitting image: tick saliva assists the causative agent of Lyme disease in evading host skin's innate immune response. J Invest Dermatol 2009; 129: 2337–2339.

    Article  CAS  Google Scholar 

  27. Bestor A, Rego RO, Tilly K, Rosa PA . Competitive advantage of Borrelia burgdorferi with outer surface protein BBA03 during tick-mediated infection of the mammalian host. Infect Immun 2012; 80: 3501–3511.

    Article  CAS  Google Scholar 

  28. Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA et al. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLoS Pathog 2013; 9: e1003567.

    Article  CAS  Google Scholar 

  29. Gilmore RD Jr, Kappel KJ, Dolan MC, Burkot TR, Johnson BJ . Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun 1996; 64: 2234–2239.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mbow ML, Gilmore Jr RD, Titus RG . An OspC-specific monoclonal antibody passively protects mice from tick-transmitted infection by Borrelia burgdorferi B31. Infect Immun 1999; 67: 5470–5472.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilmore Jr RD, Piesman J . Inhibition of Borrelia burgdorferi migration from the midgut to the salivary glands following feeding by ticks on OspC-immunized mice. Infect Immun 2000; 68: 411–414.

    Article  CAS  Google Scholar 

  32. Verstrepen BE, Bins AD, Rollier CS, Mooij P, Koopman G, Sheppard NC et al. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine 2008; 26: 3346–3351.

    Article  CAS  Google Scholar 

  33. Pokorna D, Rubio I, Muller M . DNA-vaccination via tattooing induces stronger humoral and cellular immune responses than intramuscular delivery supported by molecular adjuvants. Genet Vaccines Ther 2008; 6: 4.

    Article  Google Scholar 

  34. Petersen TN, Brunak S, von Heijne G, Nielsen H . SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8: 785–786.

    Article  CAS  Google Scholar 

  35. Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 2005; 33: W526–W531.

    Article  CAS  Google Scholar 

  36. Hovius JW, Li X, Ramamoorthi N, van Dam AP, Barthold SW, van der Poll T et al. Coinfection with Borrelia burgdorferi sensu stricto and Borrelia garinii alters the course of murine Lyme borreliosis. FEMS Immunol Med Microbiol 2007; 49: 224–234.

    Article  CAS  Google Scholar 

  37. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009; 37: e45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Erol Fikrig (Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA) for providing the OspC-mutant Borrelia burgdorferi strain. This work was supported by a ‘Veni’ grant (91611065 and 91610095) received from The Netherlands Organisation for Health Research and Development (ZonMw).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J W R Hovius.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagemakers, A., Mason, L., Oei, A. et al. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Ther 21, 1051–1057 (2014). https://doi.org/10.1038/gt.2014.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.87

This article is cited by

Search

Quick links