Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors

Abstract

Multidrug resistance (MDR) mediated by P-glycoprotein overexpression in solid tumors is a major factor in the failure of many forms of chemotherapy. Here we evaluated phospholipid-modified, low-molecular-weight polyethylenimine (DOPE-PEI) nanocarriers for intravenous delivery of anti-P-pg siRNA to tumors with the final goal of modulating MDR in breast cancer. First, we studied the biodistribution of DOPE-PEI nanocarriers and the effect of PEG coating in a subcutaneous breast tumor model. Four hours postinjection, PEGylated carriers showed an 8% injected dose (ID) accumulation in solid tumor via the enhanced permeability and retention effect and 22% ID in serum due to a prolonged, PEG-mediated circulation. Second, we established the therapeutic efficacy and safety of DOPE-PEI/siRNA-mediated P-gp downregulation in combination with doxorubicin (Dox) chemotherapy in MCF-7/MDR xenografts. Weekly injection of siRNA nanopreparations and Dox for up to 5 weeks sensitized the tumors to otherwise non-effective doses of Dox and decreased the tumor volume by threefold vs controls. This therapeutic improvement in response to Dox was attributed to the significant, sequence-specific P-gp downregulation in excised tumors mediated by the DOPE-PEI formulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Perez E . Impact, mechanisms, and novel chemotherapy strategies for overcoming resistance to anthracyclines and taxanes in metastatic breast cancer. Breast Cancer Res Treat 2009; 114: 195–201.

    Article  CAS  PubMed  Google Scholar 

  2. Wind NS, Holen I . Multidrug resistance in breast cancer: from in vitro models to clinical studies. Int J Breast Cancer 2011; 2011: 1–12.

    Article  Google Scholar 

  3. Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V . Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 1985; 316: 817–819.

    Article  CAS  PubMed  Google Scholar 

  4. Mechetner E, Kyshtoobayeva A, Zonis S, Kim H, Stroup R, Garcia R et al. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998; 4: 389–398.

    CAS  PubMed  Google Scholar 

  5. Hilary Thomas HMC . Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control 2003; 10: 150–165.

    Google Scholar 

  6. Saraswathy M, Gong S . Different strategies to overcome multidrug resistance in cancer. Biotechnol Adv 2013; 31: 1397–1407.

    Article  CAS  PubMed  Google Scholar 

  7. Coley HM . Overcoming multidrug resistance in cancer: clinical studies of P-glycoprotein inhibitors. In: Zhou J (eds). Multi-Drug Resistance in Cancer. Humana Press: New Jersey, USA, 2010, pp 341–358.

    Chapter  Google Scholar 

  8. Ozben T . Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 2006; 580: 2903–2909.

    Article  CAS  PubMed  Google Scholar 

  9. Binkhathlan Z, Lavasanifar A . P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr Cancer Drug Targets 2013; 13: 326–346.

    Article  CAS  PubMed  Google Scholar 

  10. Lee C . Reversing agents for ATP-binding cassette drug transporters. In: Zhou J (eds). Multi-Drug Resistance in Cancer. Humana Press: New Jersey, USA, 2010, pp325–340.

    Chapter  Google Scholar 

  11. Abbasi M, Lavasanifar A, Uludǎ H . Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med Res Rev 2013; 33: 33–53.

    Article  CAS  PubMed  Google Scholar 

  12. Stege A, Krühn A, Lage H . Overcoming multidrug resistance by RNA interference. In: Zhou J (eds). Multi-Drug Resistance in Cancer. Humana Press: New Jersey, USA, 2010, pp 447–465.

    Chapter  Google Scholar 

  13. Kruehn AWA, Fruehauf J, Lage H . Delivery of short hairpin RNAs by transkingdom RNA interference modulates the classical ABCB1-mediated multidrug-resistant phenotype of cancer cells. Cell Cycle 2009; 8: 3349–3354.

    Article  CAS  Google Scholar 

  14. Xia Z, Zhu Z, Zhang L, Royal C, Liu Z, Chen Q et al. Specific reversal of MDR1/P-gp-dependent multidrug resistance by RNA interference in colon cancer cells. Oncol Rep 2008; 20: 1433–1439.

    CAS  PubMed  Google Scholar 

  15. Aagaard L, Rossi JJ . RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliver Rev 2007; 59: 75–86.

    Article  CAS  Google Scholar 

  16. Won YY, Sharma R, Konieczny SF . Missing pieces in understanding the intracellular trafficking of polycation/DNA complexes. J Control Release 2009; 139: 88–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL . The possible ‘proton sponge ’ effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 2013; 21: 149–157.

    Article  CAS  PubMed  Google Scholar 

  18. Zhong D, Jiao Y, Zhang Y, Zhang W, Li N, Zuo Q et al. Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials 2013; 34: 294–305.

    Article  CAS  PubMed  Google Scholar 

  19. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 2003; 89: 113–125.

    Article  CAS  PubMed  Google Scholar 

  20. Godbey WT, Wu KK, Mikos AG . Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 1999; 45: 268–275.

    Article  CAS  PubMed  Google Scholar 

  21. Navarro G, Sawant R, Essex S, Tros de Ilarduya C, Torchilin V . Phospholipid–polyethylenimine conjugate-based micelle-like nanoparticles for siRNA delivery. Drug Deliv Transl Res 2011; 1: 25–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Navarro G, Sawant RR, Biswas S, Essex S, Tros de Ilarduya C, Torchilin VP . P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine (Lond) 2012; 7: 65–78.

    Article  CAS  Google Scholar 

  23. Torchilin V . Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63: 131–135.

    Article  CAS  PubMed  Google Scholar 

  24. Maeda H . The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189–207.

    Article  CAS  PubMed  Google Scholar 

  25. Maeda H, Bharate GY, Daruwalla J . Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biophar 2009; 71: 409–419.

    Article  CAS  Google Scholar 

  26. Sawant RR, Sriraman SK, Navarro G, Biswas S, Dalvi RA, Torchilin VP . Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery. Biomaterials 2012; 33: 3942–3951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang J, Mongayt D, Torchilin VP . Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly (ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target 2005; 13: 73–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pulaski BA, Ostrand-Rosenberg S . Mouse 4T1 breast tumor model. In: Coligan JE, Bierer BE, Margulies DH, Shevach EM, Strober W (eds). Current Protocols in Immunology. John Wiley and Sons, Inc: New York, NY, USA, 2001.

    Google Scholar 

  29. Ciardiello F, Caputo R, Borriello G, Del Bufalo D, Biroccio A, Zupi G et al. ZD1839 (IRESSA), an EGFR‐selective tyrosine kinase inhibitor, enhances taxane activity in bcl‐2 overexpressing, multidrug‐resistant MCF‐7 ADR human breast cancer cells. Int J Cancer 2002; 98: 463–469.

    Article  CAS  PubMed  Google Scholar 

  30. Dubois V, Dasnois L, Lebtahi K, Collot F, Heylen N, Havaux N et al. CPI-0004Na, a new extracellularly tumor-activated prodrug of doxorubicin in vivo toxicity, activity, and tissue distribution confirm tumor cell selectivity. Cancer Res 2002; 62: 2327–2331.

    CAS  PubMed  Google Scholar 

  31. Fu L, Zhang Y, Liang Y, Yang X, Pan Q . The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells. Eur J Cancer 2002; 38: 418–426.

    Article  CAS  PubMed  Google Scholar 

  32. Lu H-L, Syu W-J, Nishiyama N, Kataoka K, Lai P-S . Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J Control Release 2011; 155: 458–464.

    Article  CAS  PubMed  Google Scholar 

  33. van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM . Augmentation of therapeutic efficacy in drug-resistant tumor models using ceramide coadministration in temporal-controlled polymer-blend nanoparticle delivery systems. AAPS J 2010; 12: 171–180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lee ES, Na K, Bae YH . Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005; 103: 405–418.

    Article  CAS  PubMed  Google Scholar 

  35. Gao Y, Chen L, Zhang Z, Chen Y, Li Y . Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials 2011; 32: 1738–1747.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang J, Yang S, Wang J, Yang L, Xu Z, Yang T et al. Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 2010; 76: 170–178.

    Article  CAS  PubMed  Google Scholar 

  37. Boone L, Meyer D, Cusick P, Ennulat D, Bolliger AP, Everds N et al. Selection and interpretation of clinical pathology indicators of hepatic injury in preclinical studies. Vet Clin Pathol 2005; 34: 182–188.

    Article  CAS  PubMed  Google Scholar 

  38. Kratz F, Warnecke A . Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J Control Release 2012; 164: 221–235.

    Article  CAS  PubMed  Google Scholar 

  39. Lu D, Wientjes MG, Lu Z, Au JL-S . Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther 2007; 322: 80–88.

    Article  CAS  PubMed  Google Scholar 

  40. MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K et al. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 2009; 27: 643–651.

    Article  CAS  PubMed  Google Scholar 

  41. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013; 7: 994–1005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yadav S, van Vlerken LE, Little SR, Amiji MM . Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmcol 2009; 63: 711–722.

    Article  CAS  Google Scholar 

  43. Gebhart CL, Sriadibhatla S, Vinogradov S, Lemieux P, Alakhov V, Kabanov AV . Design and formulation of polyplexes based on pluronic-polyethylenimine conjugates for gene transfer. Bioconjug Chem 2002; 13: 937–944.

    Article  CAS  PubMed  Google Scholar 

  44. Shen J, Yin Q, Chen L, Zhang Z, Li Y . Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 2012; 33: 8613–8624.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Y, Zhu X, Zhang X, Liu B, Huang L . Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010; 18: 1650–1656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kim SH, Jeong JH, Lee SH, Kim SW, Park TG . Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J Control Release 2008; 129: 107–116.

    Article  CAS  PubMed  Google Scholar 

  47. Malek A, Merkel O, Fink L, Czubayko F, Kissel T, Aigner A . In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(−PEG)/siRNA complexes. Toxicol Appl Pharm 2009; 236: 97–108.

    Article  CAS  Google Scholar 

  48. Merkel OM, Librizzi D, Pfestroff A, Schurrat T, Buyens K, Sanders NN et al. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J Control Release 2009; 138: 148–159.

    Article  CAS  PubMed  Google Scholar 

  49. Dykxhoorn DM, Palliser D, Lieberman J . The silent treatment: siRNAs as small molecule drugs. Gene Therapy 2006; 13: 541–552.

    Article  CAS  PubMed  Google Scholar 

  50. Zuckerman JE, Choi CH, Han H, Davis ME . Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc Natl Acad Sci USA 2012; 109: 3137–3142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Appleyard MV, O'Neill MA, Murray KE, Paulin FE, Bray SE, Kernohan NM et al. Seliciclib (CYC202, R-roscovitine) enhances the antitumor effect of doxorubicin in vivo in a breast cancer xenograft model. Int J Cancer 2009; 124: 465–472.

    Article  CAS  PubMed  Google Scholar 

  52. Grosse PY, Bressolle F, Pinguet F . Antiproliferative effect of methyl-beta-cyclodextrin in vitro and in human tumour xenografted athymic nude mice. Br J Cancer 1998; 78: 1165–1169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Li Q, Lv S, Tang Z, Liu M, Zhang D, Yang Y et al. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. Int J Pharm 2014; 471: 412–420.

    Article  CAS  PubMed  Google Scholar 

  54. Abbasi M, Aliabadi HM, Moase EH, Lavasanifar A, Kaur K, Lai R et al. siRNA-mediated down-regulation of P-glycoprotein in a Xenograft tumor model in NOD-SCID mice. Pharm Res 2011; 28: 2516–2529.

    Article  CAS  PubMed  Google Scholar 

  55. Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y . Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(beta-amino esters). Biomaterials 2012; 33: 6495–6506.

    Article  CAS  PubMed  Google Scholar 

  56. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J . The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 2010; 31: 358–365.

    Article  CAS  PubMed  Google Scholar 

  57. Xiong X-B, Lavasanifar A . Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano 2011; 5: 5202–5213.

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Wang Y, Zhu Y, Oupicky D . Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J Control Release 2013; 172: 589–600.

    Article  CAS  PubMed  Google Scholar 

  59. Mosure KW, Henderson AJ, Klunk LJ, Knipe JO . Disposition of conjugate-bound and free doxorubicin in tumor-bearing mice following administration of a BR96-doxorubicin immunoconjugate (BMS 182248). Cancer Chemother Pharmcol 1997; 40: 251–258.

    Article  CAS  Google Scholar 

  60. Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U et al. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/siRNA polyplexes. Bioconjug Chem 2006; 17: 1209–1218.

    Article  CAS  PubMed  Google Scholar 

  61. Wu H, Hait WN, Yang J-M . Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003; 63: 1515–1519.

    CAS  PubMed  Google Scholar 

  62. Pakunlu RI, Cook TJ, Minko T . Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm Res 2003; 20: 351–359.

    Article  CAS  PubMed  Google Scholar 

  63. Saad M, Garbuzenko OB, Minko T . Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond) 2008; 3: 761–776.

    Article  CAS  Google Scholar 

  64. Li S-D, Chen Y-C, Hackett MJ, Huang L . Tumor-targeted delivery of siRNA by self-assembled nanoparticles. Mol Ther 2007; 16: 163–169.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported with the NIH grant U54CA151881 to VT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V P Torchilin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essex, S., Navarro, G., Sabhachandani, P. et al. Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther 22, 257–266 (2015). https://doi.org/10.1038/gt.2014.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.97

This article is cited by

Search

Quick links