Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media

Abstract

Background:

Obesity is linked to chronic inflammation in white adipose tissue, which is exacerbated by infiltrating macrophages (MΦs). We recently demonstrated that an extract from grape powder (GPE), which is abundant in quercetin (QUE), reduced inflammation in human MΦs and prevented MΦ-mediated inflammation and insulin resistance in human adipocytes. However, we did not know how QUE individually affected these outcomes.

Objective and design:

We examined the extent to which QUE prevents inflammation in human MΦs (that is, differentiated U937 cell line) and cross-talk with human adipocytes (that is, primary cultures of newly differentiated human adipocytes).

Methods and results:

Treatment of MΦs with QUE attenuated the basal expression of inflammatory genes, such as tumor necrosis factor-α, interleukin (IL)-6, IL-8, IL-1β and interferon-γ inducible protein-10, and cyclooxygenase-2, a marker of prostaglandin production. QUE also attenuated the abundance of phosphorylated c-Jun N-terminal kinase (JNK) and c-Jun, and IκBα degradation in MΦs. Furthermore, conditioned media (CM) obtained from MΦs treated with QUE decreased the capacity of this CM to inflame adipocytes and cause insulin resistance as evidenced by decreased: (1) inflammatory gene expression, (2) phosphorylation of JNK and c-Jun, (3) serine residue 307 phosphorylation of insulin receptor substrate (IRS)-1, 4) protein tyrosine phosphatase-1B gene expression and 5) suppression of insulin-stimulated glucose uptake.

Conclusion:

Taken together, these data suggest that QUE is one of the bioactive components of GPE that prevents inflammation in MΦs and MΦ-mediated insulin resistance in adipocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tilg H, Moschen AR . Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006; 6: 772–783.

    Article  CAS  Google Scholar 

  2. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on obesity and heart disease from the Obesity Committee of the Council on nutrition, physical activity, and metabolism. Circulation 2006; 113: 898–918.

    Article  Google Scholar 

  3. Cottam DR, Mattar SG, Barinas-Mitchell E, Eid G, Kuller L, Kelley DE et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg 2004; 14: 589–600.

    Article  Google Scholar 

  4. Trayhurn P, Wood IS . Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004; 92: 347–355.

    Article  CAS  Google Scholar 

  5. Laine PS, Schwartz EA, Wang Y, Zhang WY, Karnik SK, Musi N et al. Palmitic acid induces IP-10 expression in human macrophages via NF-kappaB activation. Biochem Biophys Res Commun 2007; 358: 150–155.

    Article  CAS  Google Scholar 

  6. Wellen KE, Hotamisligil GS . Inflammation, stress, and diabetes. J Clin Invest 2005; 115: 1111–1119.

    Article  CAS  Google Scholar 

  7. Fantuzzi G . Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2004; 115: 911–919.

    Article  Google Scholar 

  8. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW . Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissue of obese humans. Endocrinology 2004; 145: 2273–2282.

    Article  CAS  Google Scholar 

  9. Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 2004; 18: 1657–1669.

    Article  Google Scholar 

  10. Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 2006; 49: 744–747.

    Article  CAS  Google Scholar 

  11. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R . MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    Article  CAS  Google Scholar 

  12. Skurk T, Herder C, Kraft I, Muller-Scholze S, Hauner H, Kolb H . Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 2005; 146: 1006–1011.

    Article  CAS  Google Scholar 

  13. Lumeng C, Deyoung S, Saltiel A . Macrophages block insulin action in adipcytes by altering expression of signaling and glucose transport proteins. Am J Physiol 2007; 292: E166–E174.

    CAS  Google Scholar 

  14. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191–198.

    Article  CAS  Google Scholar 

  15. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2005; 116: 115–124.

    Article  Google Scholar 

  16. Sakurai T, Kitadateb K, Nishiokab H, Fujiib H, Kizakia T, Kondohc Y et al. Oligomerized grape seed polyphenols attenuate inflammatory changes due to antioxidative properties in coculture of adipocytes and macrophages. J Nutr Biochem 2010; 21: 47–54.

    Article  CAS  Google Scholar 

  17. Terra X, Valls J, Vitrac X, Mérrillon JM, Arola L, Ardèvol A et al. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 2007; 55: 4357–4365.

    Article  CAS  Google Scholar 

  18. Overman A, Bumrungpert A, Kennedy A, Martinez K, Chuang C, West T et al. Polyphenol-rich grape extract attenuates inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. Int J Obesity 2010; 34: 800–808.

    Article  CAS  Google Scholar 

  19. Matheson LA, Labow RS, Santerre JP . Biodegradation of polycarbonate-based polyurethanes by the human monocytes-derived macrophage and U937 cell systems. J Biomed Mater Res 2002; 61: 505–513.

    Article  CAS  Google Scholar 

  20. Brown JM, Sandberg-Boysen M, Chung S, Fabiyi O, Morrision R, Mandrup S et al. Conjugated linoleic acid (CLA) induces human adipocyte delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. J Biol Chem 2004; 279: 26735–26747.

    Article  CAS  Google Scholar 

  21. Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK . Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 2006; 147: 5340–5351.

    Article  CAS  Google Scholar 

  22. Yin K, Liao D, Tang C . ABAC1: a possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16: 438–449.

    Article  CAS  Google Scholar 

  23. Suganami T, Nishida H, Ogawa Y . A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and TNFα. Arterioscler Throm Vasc Biol 2005; 25: 2062–2068.

    Article  CAS  Google Scholar 

  24. Egert S, Bosy-Westphal A, Seiberl J, Kürbitz C, Settler U, Plachta-Danielzik S et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 2009; 102: 1065–1074.

    Article  CAS  Google Scholar 

  25. Stewart LK, Soileau JL, Ribnicky D, Wang ZQ, Raskin I, Poulev A et al. Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism 2008; 57: S39–S46.

    Article  CAS  Google Scholar 

  26. Rivera L, Morón R, Sánchez M, Zarzuelo A, Galisteo M . Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 2008; 16: 2081–2087.

    Article  CAS  Google Scholar 

  27. Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M et al. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol 2010; 30: 749–757.

    Article  CAS  Google Scholar 

  28. Okoko T, Oruambo IF . Inhibitory activity of quercetin and its metabolite on lipopolysaccharide-induced activation of macrophage U937 cells. Food Chem Toxico 2009; 47: 809–812.

    Article  CAS  Google Scholar 

  29. Kaneko M, Takimoto H, Sugiyama T, Seki Y, Kawaguchi K, Kumazawa Y . Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol Immunotoxicol 2008; 30: 867–882.

    Article  CAS  Google Scholar 

  30. Ahn J, Lee H, Kim S, Park J, Ha T . The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 2008; 373: 545–549.

    Article  CAS  Google Scholar 

  31. Lee KW, Kang NJ, Heo YS, Rogozin EA, Pugliese A, Hwang MK et al. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res 2008; 68: 946–955.

    Article  CAS  Google Scholar 

  32. Huang RY, Yu YL, Cheng WC, Ouyang CN, Fu E, Chu CL . Immunosuppressive effect of quercetin on dendritic cell activation and function. J Immunol 2010; 184: 6815–6821.

    Article  CAS  Google Scholar 

  33. Ortega MG, Saragusti AC, Cabrera JL, Chiabrando GA . Quercetin tetraacetyl derivative inhibits LPS-induced nitric oxide synthase (iNOS) expression in J774A.1 cells. Arch Biochem Biophys 2010; 498: 105–110.

    Article  CAS  Google Scholar 

  34. Jang S, Kelley KW, Johnson RW . Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 2008; 105: 7534–7539.

    Article  CAS  Google Scholar 

  35. Chen CY, Peng WH, Tsai KD, Hsu SL . Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 2007; 81: 1602–1614.

    Article  CAS  Google Scholar 

  36. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M . Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb.2adaptor protein. J Biol Chem 2000; 275: 4283–4289.

    Article  CAS  Google Scholar 

  37. Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB . Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 2008; 283: 14230–14241.

    Article  CAS  Google Scholar 

  38. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    Article  CAS  Google Scholar 

  39. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    Article  CAS  Google Scholar 

  40. Permana PA, Menge C, Reaven PD . Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 2006; 341: 507–514.

    Article  CAS  Google Scholar 

  41. Rahman I, Biswas S, Kirkham P . Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharm 2006; 72: 1439–1452.

    Article  CAS  Google Scholar 

  42. Necela BM, Su W, Thompson EA . Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor γ and nuclear factor-κB in macrophages. Immunology 2008; 125: 344–358.

    Article  CAS  Google Scholar 

  43. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA et al. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999; 104: 383–389.

    Article  CAS  Google Scholar 

  44. Desreumaux P, Dubuquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K et al. Attenuation of colon inflammation through activators of the retinoid X receptor(RXR)/peroxisome proliferator-activated receptor gamma(PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 2001; 193: 827–838.

    Article  CAS  Google Scholar 

  45. Saubermann LJ, Nakajima A, Wada K, Zhao S, Terauchi Y, Kadowaki T et al. Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis. Inflamm Bowel Dis 2002; 8: 330–339.

    Article  Google Scholar 

  46. Katayama K, Wada K, Nakajima A, Mizuguchi H, Hayakawa T, Nakagawa S et al. A novel PPAR gamma gene therapy to control inflammation associated with inflammatory bowel disease in a murine model. Gastroenterology 2003; 124: 1315–1324.

    Article  CAS  Google Scholar 

  47. Lytle C, Tod TJ, Vo KT, Lee JW, Atkinson RD, Straus DS . The peroxisome proliferator-activated receptor gamma ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm Bowel Dis 2005; 11: 231–243.

    Article  Google Scholar 

  48. Schaefer KL, Denevich S, Ma C, Cooley SR, Nakajima A, Wada K et al. Intestinal antiinflammatory effects of thiazolidenedione peroxisome proliferator-activated receptor-gamma ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms. Inflamm Bowel Dis 2005; 11: 244–252.

    Article  Google Scholar 

  49. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM . Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93: 229–240.

    Article  CAS  Google Scholar 

  50. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM . PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–252.

    Article  CAS  Google Scholar 

  51. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK . Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106: 523–531.

    Article  CAS  Google Scholar 

  52. Zhang L, Chawla A . Role of PPARgamma in macrophage biology and atherosclerosis. Trends Endocrinol Metab 2004; 15: 500–505.

    Article  CAS  Google Scholar 

  53. Hammad H, de Heer HJ, Soullie T, Angeli V, Trottein F, Hoogsteden HC et al. Activation of peroxisome proliferator activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol 2004; 164: 263–271.

    Article  CAS  Google Scholar 

  54. Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B et al. Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation. J Exp Med 2003; 198: 411–421.

    Article  CAS  Google Scholar 

  55. Trifilieff A, Bench A, Hanley M, Bayley D, Campbell E, Whittaker P . PPAR-alpha and -gamma but not -delta agonists inhibit airway inflammation in a murine model of asthma: in vitro evidence for an NF-kappaB-independent effect. Br J Pharmacol 2003; 139: 163–171.

    Article  CAS  Google Scholar 

  56. Demerjian M, Man MQ, Choi EH, Brown BE, Crumrine D, Chang S et al. Topical treatment with thiazolidinediones, activators of peroxisome proliferator-activated receptor-gamma, normalizes epidermal homeostasis in a murine hyperproliferative disease model. Exp Dermatol 2006; 15: 154–160.

    Article  CAS  Google Scholar 

  57. Hasegawa H, Takano H, Zou Y, Qin Y, Hizukuri K, Odaka K et al. Pioglitazone, a peroxisome proliferator activated receptor gamma activator, ameliorates experimental autoimmune myocarditis by modulating Th1/Th2 balance. J Mol Cell Cardiol 2005; 38: 257–265.

    Article  CAS  Google Scholar 

  58. Yuan ZY, Liu Y, Liu Y, Zhang JJ, Kishimoto C, Wang YN et al. PPAR-gamma ligands inhibit the expression of inflammatory cytokines and attenuate autoimmune myocarditis. Chin Med J (Engl) 2004; 117: 1253–1255.

    CAS  Google Scholar 

  59. Natarajan C, Bright JJ . Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1differentiation. Genes Immun 2002; 3: 59–70.

    Article  CAS  Google Scholar 

  60. Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AE et al. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandinJ(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002; 168: 2508–2515.

    Article  CAS  Google Scholar 

  61. Wang Q, Xia M, Liu C, Guo H, Ye Q, Hu Y et al. Cyanidin-3-O-beta-glucoside inhibits iNOS and COX-2 expression by inducing liver X receptor alpha activation in THP-1 macrophages. Life Sci 2008; 83: 176–184.

    Article  CAS  Google Scholar 

  62. Xia M, Hou M, Zhu H, Ma J, Tang Z, Wang Q et al. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor γ-liver X receptor α-ABCA1 pathway. J Biol Chem 2005; 280: 36792–36801.

    Article  CAS  Google Scholar 

  63. Szanto A, Rõszer T . Nuclear receptors in macrophages: a link between metabolism and inflammation. FEBS Letters 2008; 582: 106–116.

    Article  CAS  Google Scholar 

  64. Varga T, Nagy L . Nuclear receptors, transcription factors linking lipid metabolism and immunity: the case of peroxisome proliferator-activated receptor gamma. Eur J Clin Invest 2008; 38: 695–707.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the North Carolina Agricultural Research Service (NCARS 02288) for providing financial support for these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M McIntosh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overman, A., Chuang, CC. & McIntosh, M. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. Int J Obes 35, 1165–1172 (2011). https://doi.org/10.1038/ijo.2010.272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.272

Keywords

This article is cited by

Search

Quick links