Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Review
  • Published:

Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions

Abstract

Obesity now represents one of the major health care issues of the 21st century. Its prevalence has increased exponentially in both the developed and developing world during the last couple of decades. Such a rapid rise can therefore not be explained by a change in genotype, but must result from environmental factors and their interaction with our genes. There is clear evidence to show that current environmental factors such as current diet and level of physical activity can influence our risk of obesity. However, there is growing evidence to suggest that factors acting during very early life can influence long-term energy balance. One such factor that is emerging as an important player is maternal obesity and/or over-nutrition during pregnancy and lactation. Early life may therefore represent a critical period during which intervention strategies could be developed to reduce the prevalence of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. International Obesity Task Force. Childhood Obesity, 2010. Available from http://www.iotf.org/childhoodobesity.asp (cited 18 November 2010).

  2. World Health Organization. Obesity and overweight fact sheet, 2010. Available from http://www.who.int/mediacentre/factsheets/fs311/en/index.html (cited 18 November 2010) .

  3. World Health Organization. Global strategy on diet, physical activity and health, 2010. Available from http://www.who.int/dietphysicalactivty/childhood_what/en/index.html (cited 18 November 2010).

  4. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH . Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997; 337: 869–873.

    Article  CAS  Google Scholar 

  5. Lee JH, Reed DR, Price RA . Familial risk ratios for extreme obesity: implications for mapping human obesity genes. Int J Obes Relat Metab Disord 1997; 21: 935–940.

    Article  CAS  Google Scholar 

  6. Wardle J, Carnell S, Haworth CM, Plomin R . Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 2008; 87: 398–404.

    Article  CAS  Google Scholar 

  7. Anzman SL, Rollins BY, Birch LL . Parental influence on children's early eating environments and obesity risk: implications for prevention. Int J Obes 2010; 34: 1116–1124.

    Article  CAS  Google Scholar 

  8. Drake AJ, Reynolds RM . Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction 2010; 140: 387–398.

    Article  CAS  Google Scholar 

  9. Nelson SM, Matthews P, Poston L . Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update 2010; 16: 255–275.

    Article  Google Scholar 

  10. Catalano PM, Presley L, Minium J, Hauguel-de MS . Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 2009; 32: 1076–1080.

    Article  CAS  Google Scholar 

  11. McIntyre & HAPO Study Cooperative Research Group. Hyperglycaemia and adverse pregnancy outcome (HAPO) study: associations with maternal body mass index. Br J Obstet Gynaecol 2010; 117: 575–584.

    Article  Google Scholar 

  12. Whitaker RC . Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 2004; 114: e29–e36.

    Article  Google Scholar 

  13. Gale CR, Javaid MK, Robinson SM, Law CM, Godfrey KM, Cooper C . Maternal size in pregnancy and body composition in children. J Clin Endocrinol Metab 2007; 92: 3904–3911.

    Article  CAS  Google Scholar 

  14. Lawlor DA, Smith GD, O’Callaghan M, Alati R, Mamun AA, Williams GM et al. Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the Mater-University study of pregnancy and its outcomes. Am J Epidemiol 2007; 165: 418–424.

    Article  Google Scholar 

  15. Boney CM, Verma A, Tucker R, Vohr BR . Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005; 115: E290–E296.

    Article  Google Scholar 

  16. Fraser A, Tilling K, Macdonald-Wallis C, Sattar N, Brion MJ, Benfield L et al. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 2010; 121: 2557–2564.

    Article  Google Scholar 

  17. Reynolds RM, Osmond C, Phillips DI, Godfrey KM . Maternal BMI, parity, and pregnancy weight gain: influences on offspring adiposity in young adulthood. J Clin Endocrinol Metab 2010; 95: 5365–5369.

    Article  CAS  Google Scholar 

  18. Mamun AA, O’Callaghan M, Callaway L, Williams G, Najman J, Lawlor DA . Associations of gestational weight gain with offspring body mass index and blood pressure at 21 years of age: evidence from a birth cohort study. Circulation 2009; 119: 1720–1727.

    Article  Google Scholar 

  19. Weissgerber TL, Wolfe LA, Davies GAL, Mottola MF . Exercise in the prevention and treatment of maternal-fetal disease: a review of the literature. Appl Physiol Nutr Metab 2006; 31: 661–674.

    Article  Google Scholar 

  20. Sacks DA, Liu AI, Wolde-Tsadik G, Amini SB, Huston-Presley L, Catalano PM . What proportion of birth weight is attributable to maternal glucose among infants of diabetic women? Am J Obstet Gynaecol 2006; 194: 501–507.

    Article  CAS  Google Scholar 

  21. Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR et al., HAPO Study Cooperative Research Group. Hyperglycaemia and adverse pregnancy outcomes. N Engl J Med 2008; 358: 1991–2002.

    Article  Google Scholar 

  22. Ning Y, Williams MA, Butler CL, Muy-Rivera M, Frederick IO, Sorenson TK . Maternal recreational physical activity is associated with plasma leptin concentrations in early pregnancy. Hum Reprod 2005; 2: 382–389.

    Article  Google Scholar 

  23. Clapp JF . Influence of endurance exercise and diet on human placental development and fetal growth. Placenta 2006; 27: 527–534.

    Article  CAS  Google Scholar 

  24. Artal RA, Catanzaro RB, Gavard JA, Mostello DJ, Friganza JC . A lifestyle intervention of weight-gain restriction: diet and exercise in obese women with gestational diabetes mellitus. Appl Physiol Nutr Metab 2007; 32: 596–601.

    Article  Google Scholar 

  25. Hegaard HK, Pedersen BK, Nielsen BB, Damm P . Leisure time physical activity during pregnancy and impact on gestational diabetes mellitus, pre-eclampsia, preterm delivery and birth weight: a review. Acta Obstet Gynecol 2007; 86: 1290–1296.

    Article  Google Scholar 

  26. Mottola MF, Giroux I, Gratton R, Hammond JA, Hanley A, Harris S et al. Nutrition and exercise prevent excess weight gain in overweight pregnant women. Med Sci Sports Exerc 2010; 42: 265–272.

    Article  CAS  Google Scholar 

  27. Hopkins SA, Baldi JC, Cutfield WS, McCowan L, Hofman PL . Exercise training in pregnancy reduces offspring size without changes in maternal insulin sensitivity. J Clin Endocrinol Metab 2010; 95: 2080–2088.

    Article  CAS  Google Scholar 

  28. Ainge H, Thompson C, Ozanne SE, Rooney KB . A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. Int J Obes 2010; 35: 325–335.

    Article  Google Scholar 

  29. Guo F, Catherine Jen KL . High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav 1995; 57: 681–686.

    Article  CAS  Google Scholar 

  30. Buckley AJ, Keseru B, Briody J, Thompson M, Ozanne SE, Thompson CH . Altered body composition and metabolism in the male offspring of high fat-fed rats. Metabolism 2005; 54: 500–507.

    Article  CAS  Google Scholar 

  31. Cerf ME, Williams K, Nkomo XI, Muller CJ, Du Toit DF, Louw J et al. Islet cell response in the neonatal rat after exposure to a high-fat diet during pregnancy. Am J Physiol 2005; 288: R1122–R1128.

    CAS  Google Scholar 

  32. Tamashiro KLK, Terrillion CE, Hyun J, Koenig JI, Moran TH . Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes 2009; 58: 1116–1125.

    Article  CAS  Google Scholar 

  33. Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, remacle C et al. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 2009; 52: 1133–1142.

    Article  CAS  Google Scholar 

  34. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance—a novel murine model of developmental programming. Hypertension 2008; 51: 383–392.

    Article  CAS  Google Scholar 

  35. Taylor PD, McConnell J, Khan IY, Holemans K, Lawrence KM, Asare-Anane H et al. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol 2005; 288: R134–R139.

    CAS  Google Scholar 

  36. Dyrskog SEU, Gregersen S, Hermansen K . High-fat feeding during gestation and nursing period have differential effects on the insulin secretory capacity in offspring from normal Wistar rats. Rev Diabet Stud 2005; 2: 136–145.

    Article  Google Scholar 

  37. Oben JA, Patel T, Mouralidarane A, Samuelsson AM, Matthews P, Pombo J et al. Maternal obesity programmes offspring development of non-alcoholic fatty pancreas disease. Biochem Biophys Res Commun 2010; 394: 24–28.

    Article  CAS  Google Scholar 

  38. Martin-Gronert MS, Fernandez-Twinn DS, Poston L, Ozanne SE . Altered hepatic insulin signalling in male offspring of obese mice. J Dev Orig Health Dis 2010; 1: 184–191.

    Article  CAS  Google Scholar 

  39. Shelley P, Martin-Gronert MS, Rowlerson A, Poston L, Heales SJR, Hargreaves IP et al. Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice. Am J Physiol 2009; 297: R675–R681.

    CAS  Google Scholar 

  40. Bayol SA, Farrington SJ, Stickland NC . A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr 2007; 98: 843–851.

    Article  CAS  Google Scholar 

  41. Morris MJ, Chen H . Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int J Obes 2009; 33: 115–122.

    Article  CAS  Google Scholar 

  42. Rajia S, Chen H, Morris MJ . Maternal overnutrition impacts offspring adiposity and brain appetite markers-modulation by postweaning diet. J Neuroendocrinol 2010; 22: 905–914.

    CAS  PubMed  Google Scholar 

  43. Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS ONE 2009; 4: e5870.

    Article  Google Scholar 

  44. Chen H, Simar D, Lambert K, Mercier J, Morris MJ . Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 2008; 149: 5348–5356.

    Article  CAS  Google Scholar 

  45. Howie GJ, Sloboda DM, Kamal T, Vickers MH . Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol (Lond) 2009; 587: 905–915.

    Article  CAS  Google Scholar 

  46. Ferezou-Viala J, Roy AF, Serougne C, Gripois D, Parquet M, Bailleux V et al. Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. Am J Physiol 2007; 293: R1056–R1062.

    CAS  Google Scholar 

  47. Chang GQ, Gaysingskaya V, Karatayev O, Leibowitz SF . Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 2008; 28: 12107–12119.

    Article  CAS  Google Scholar 

  48. Bouret SG . Neurodevelopmental actions of leptin. Brain Res 2010; 1350: 2–9.

    Article  CAS  Google Scholar 

  49. Plagemann A, harder T, Rake A, Voits M, Fink H, Rohde W et al. Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res 1999; 836: 146–155.

    Article  CAS  Google Scholar 

  50. Harder T, Plagemann A, Rohde W, Dorner G . Syndrome X-like alterations in adult female rats due to neonatal insulin treatment. Metabolism 1998; 47: 855–862.

    Article  CAS  Google Scholar 

  51. Mayer-Davis EJ, Rifas-Shiman SL, Zhou L, Hu FB, Colditz GA, Gillman MW . Breast-feeding and risk for childhood obesity. Diabetes Care 2006; 29: 2231–2237.

    Article  Google Scholar 

  52. Plagemann A, Harder T, Franke K, Kohlhoff R . Long-term impact of neonatal breast-feeding on body weight and glucose tolerance in children of diabetic mothers. Diabetes Care 2002; 25: 16–22.

    Article  Google Scholar 

  53. Rodekamp E, Harder T, Kohlhoff R, Franke K, Dudenhausen JW, Plagemann A . Long-term impact of breast-feeding on body weight and glucose tolerance in children of diabetic mothers: role of the late neonatal period and early infancy. Diabetes Care 2005; 28: 1457–1462.

    Article  CAS  Google Scholar 

  54. Zambrano E, Marinez-Samayoa PM, Rodriguez-Gonzalez GL, Nathanielsz PW . Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol (Lond) 2010; 588: 1791–1799.

    Article  CAS  Google Scholar 

  55. Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847–854.

    Article  CAS  Google Scholar 

  56. Bick-Sander A, Steiner B, Wolf SA, Babu H, Kempermann G . Running in pregnancy transiently increases postnatal hippocampal neurogenesis in the offspring. Proc Natl Acad Sci USA 2006; 103: 3852–3857.

    Article  CAS  Google Scholar 

  57. Seabra AF, Mendonca DM, Goring HH, Thomis MA, Maia JA . Genetic and environmental factors in familial clustering in physical activity. Eur J Epidemiol 2008; 23: 205–211.

    Article  Google Scholar 

  58. Kelly SA, Nehrenberg DL, Hua K, Gordon RR, Garland Jr T, Pomp D . Parent-of-origin effects on voluntary exercise levels and body composition in mice. Physiol Gen 2009; 40: 111–120.

    Article  Google Scholar 

  59. Simonen RL, Rankinen T, Perusse L, Rice T, Rao DC, Chagnon Y et al. Genome-wide linkage scan for physical activity levels in the Quebec family study. Med Sci Sports Exerc 2003; 35: 1355–1359.

    Article  Google Scholar 

  60. Bayol SA, Simbi BH, Stickland NC . A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol (Lond) 2005; 567: 951–961.

    Article  CAS  Google Scholar 

  61. Timson BF, Bowlin BK, Dudenhoeffer GA, George JB . Fiber number, area and composition of mouse soleus muscle following enlargement. J Appl Physiol 1985; 58: 619–624.

    Article  CAS  Google Scholar 

  62. Bar A, Pette D . Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett 1988; 235: 153–155.

    Article  CAS  Google Scholar 

  63. Du M, Yan X, Tong JF, Zhao J, Zhu MJ . Maternal obesity, inflammation, and fetal skeletal muscle development. Biol Reprod 2010; 82: 4–12.

    Article  CAS  Google Scholar 

  64. Tong JF, Yan X, Zhu MJ, Ford SP, Nathanielsz PW, Du M . Maternal obesity downregulates myogenesis and b-catenin signaling in fetal skeletal muscle. Am J Physiol 2009; 296: E917–E924.

    CAS  Google Scholar 

  65. Bayol SA, Macharia R, Farrington SJ, Simbi BH, Stickland NC . Evidence that a maternal ‘junk food’ diet during pregnancy and lactation can reduce muscle force in offspring. Eur J Nutr 2009; 48: 62–65.

    Article  Google Scholar 

  66. Bruce KD, Cagamapang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 2009; 50: 1796–1808.

    Article  CAS  Google Scholar 

  67. Rising R, Lifshitz F . Lower energy expenditures in infants from obese biological mothers. Nutrition J 2008; 7: 15–22.

    Article  Google Scholar 

  68. Miles JL, Huber K, Thompson NM, Davison M, Breier BH . Moderately daily exercise activates metabolic flexibility to prevent prenatally induced obesity. Endocrinology 2009; 150: 179–186.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Ozanne.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooney, K., Ozanne, S. Maternal over-nutrition and offspring obesity predisposition: targets for preventative interventions. Int J Obes 35, 883–890 (2011). https://doi.org/10.1038/ijo.2011.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.96

Keywords

This article is cited by

Search

Quick links