Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications

Abstract

Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 2005; 45: 142–161.

    Article  CAS  PubMed  Google Scholar 

  2. Group JJW. Guidelines for the clinical use of 24 hour ambulatory blood pressure monitoring (ABPM) (JCS 2010): – digest version –. Circ J 2012; 76: 508–519.

    Article  Google Scholar 

  3. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–1252.

    Article  CAS  PubMed  Google Scholar 

  4. Netea RT, Lenders JW, Smits P, Thien T . Both body and arm position significantly influence blood pressure measurement. J Hum Hypertens 2003; 17: 459–462.

    Article  CAS  PubMed  Google Scholar 

  5. Eşer I, Khorshid L, Güneş UY, Demir Y . The effect of different body positions on blood pressure. J Clin Nurs 2007; 16: 137–140.

    Article  PubMed  Google Scholar 

  6. Ogedegbe G, Pickering T . Principles and techniques of blood pressure measurement. Cardiol Clin 2010; 28: 571–586.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  8. Kshirsagar A, Carpenter M, Bang H, Wyatt S, Colindres R . Blood pressure usually considered normal is associated with an elevated risk of cardiovascular disease. Am J Med 2006; 119: 133–141.

    Article  PubMed  Google Scholar 

  9. Kannel W, Vasan R, Levy D . Is the relation of systolic blood pressure to risk of cardiovascular disease continuous and graded, or are there critical values? Hypertension 2003; 42: 453–456.

    Article  CAS  PubMed  Google Scholar 

  10. Cook N, Cohen J, Hebert P, Taylor J, H C . Implications of small reductions in diastolic blood-pressure for primary prevention. Arch Int Med 1995; 155: 701–709.

    Article  CAS  Google Scholar 

  11. Rich DQ, Kipen HM, Huang W, Wang G, Wang Y, Zhu et al. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 2012; 307: 2068–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cosselman KE, Krishnan RM, Oron AP, Jansen K, Peretz A, Sullivan JH et al. Blood pressure response to controlled diesel exhaust exposure in human subjects. Hypertension 2012; 59: 943–948.

    Article  CAS  PubMed  Google Scholar 

  13. Baccarelli A, Barretta F, Dou C, Zhang X, McCracken JP, Díaz A et al. Effects of particulate air pollution on blood pressure in a highly exposed population in Beijing, China: a repeated-measure study. Environ Health 2011; 10: 108.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sérgio Chiarelli P, Amador Pereira LA, Nascimento Saldiva PH, Ferreira Filho C, Bueno Garcia ML, Ferreira Braga AL et al. The association between air pollution and blood pressure in traffic controllers in Santo André, São Paulo, Brazil. Environ Res 2011; 111: 650–655.

    Article  CAS  PubMed  Google Scholar 

  15. Tsai DH, Riediker M, Wuerzner G, Maillard M, Marques-Vidal P, Paccaud F et al. Short-term increase in particulate matter blunts nocturnal blood pressure dipping and daytime urinary sodium excretion. Hypertension 2012; 60: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  16. Brook R, Bard R, Burnett R, Shin H, Vette A, Croghan C et al. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup Environ Med 2011; 68: 224–230.

    Article  PubMed  Google Scholar 

  17. Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 2009; 54: 659–667.

    Article  CAS  PubMed  Google Scholar 

  18. Urch B, Silverman F, Corey P, Brook JR, Lukic KZ, Rajagopalan S et al. Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ Health Perspect 2005; 113: 1052–1055.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gong H, Linn WS, Sioutas C, Terrell SL, Clark KW, Anderson KR et al. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol 2003; 15: 305–325.

    Article  CAS  PubMed  Google Scholar 

  20. de Paula Santos U, Braga AL, Giorgi DM, Pereira LA, Grupi CJ, Lin CA et al. Effects of air pollution on blood pressure and heart rate variability: a panel study of vehicular traffic controllers in the city of São Paulo, Brazil. Eur Heart J 2005; 26: 193–200.

    Article  CAS  PubMed  Google Scholar 

  21. Wu S, Deng F, Huang J, Wang H, Shima M, Wang X et al. Blood pressure changes and chemical constituents of particulate air pollution: results from the healthy volunteer natural relocation (HVNR) study. Environ Health Perspect 2013; 121: 66–72.

    Article  PubMed  Google Scholar 

  22. Langrish JP, Mills NL, Chan JK, Leseman DL, Aitken RJ, Fokkens PH et al. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol 2009; 6: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wing S, Horton RA, Rose KM . Air pollution from industrial swine operations and blood pressure of neighboring residents. Environ Health Perspect 2013; 121: 92–96.

    Article  PubMed  Google Scholar 

  24. Brook RD, Xu X, Bard RL, Dvonch JT, Morishita M, Kaciroti N et al. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution. Sci Total Environ 2013; 448: 66–71.

    Article  CAS  PubMed  Google Scholar 

  25. Linn WS, Gong H, Clark KW, Anderson KR . Day-to-day particulate exposures and health changes in Los Angeles area residents with severe lung disease. J Air Waste Manag Assoc 1999; 49: 108–115.

    Article  CAS  PubMed  Google Scholar 

  26. Zanobetti A, Canner MJ, Stone PH, Schwartz J, Sher D, Eagan-Bengston E et al. Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation 2004; 110: 2184–2189.

    Article  PubMed  Google Scholar 

  27. Mar TF, Koenig JQ, Jansen K, Sullivan J, Kaufman J, Trenga CA et al. Fine particulate air pollution and cardiorespiratory effects in the elderly. Epidemiology 2005; 16: 681–687.

    Article  PubMed  Google Scholar 

  28. Liu L, Ruddy T, Dalipaj M, Poon R, Szyszkowicz M, You H et al. Effects of indoor, outdoor, and personal exposure to particulate air pollution on cardiovascular physiology and systemic mediators in seniors. J Occup Environ Med 2009; 51: 1088–1098.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffmann B, Luttmann-Gibson H, Cohen A, Zanobetti A, de Souza C, Foley C et al. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure. Environ Health Perspect 2012; 120: 241–246.

    Article  CAS  PubMed  Google Scholar 

  30. Rich DQ, Zareba W, Beckett W, Hopke PK, Oakes D, Frampton MW et al. Are Ambient Ultrafine, Accumulation Mode, and Fine Particles Associated With Adverse Cardiac Responses in Patients Undergoing Cardiac Rehabilitation? Environ Health Perspect 2012; 120: 1162–1169.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang W, Zhu T, Pan X, Hu M, Lu SE, Lin Y et al. Air pollution and autonomic and vascular dysfunction in patients with cardiovascular disease: interactions of systemic inflammation, overweight, and gender. Am J Epidemiol 2012; 176: 117–126.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Delfino RJ, Tjoa T, Gillen DL, Staimer N, Polidori A, Arhami M et al. Traffic-related air pollution and blood pressure in elderly subjects with coronary artery disease. Epidemiology 2010; 21: 396–404.

    Article  PubMed  Google Scholar 

  33. Brauer M, Ebelt ST, Fisher TV, Brumm J, Petkau AJ, Vedal S . Exposure of chronic obstructive pulmonary disease patients to particles: respiratory and cardiovascular health effects. J Expo Anal Environ Epidemiol 2001; 11: 490–500.

    Article  CAS  PubMed  Google Scholar 

  34. Jansen KL, Larson TV, Koenig JQ, Mar TF, Fields C, Stewart J et al. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ Health Perspect 2005; 113: 1741–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ibald-Mulli A, Timonen KL, Peters A, Heinrich J, Wölke G, Lanki T et al. Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ Health Perspect 2004; 112: 369–377.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu L, Ruddy TD, Dalipaj M, Szyszkowicz M, You H, Poon R et al. Influence of personal exposure to particulate air pollution on cardiovascular physiology and biomarkers of inflammation and oxidative stress in subjects with diabetes. J Occup Environ Med 2007; 49: 258–265.

    Article  PubMed  Google Scholar 

  37. Jacobs L, Buczynska A, Walgraeve C, Delcloo A, Potgieter-Vermaak S, Van Grieken R et al. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons. Environ Res 2012; 117: 60–67.

    Article  CAS  PubMed  Google Scholar 

  38. Jansen PM, Leineweber MJ, Thien T . The effect of a change in ambient temperature on blood pressure in normotensives. J Hum Hypertens 2001; 15: 113–117.

    Article  CAS  PubMed  Google Scholar 

  39. Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J . Relationship between outdoor temperature and blood pressure. Occup Environ Med 2011; 68: 296–301.

    Article  PubMed  Google Scholar 

  40. Barnett A, Sans S, Salomaa V, Kuulasmaa K, Dobson A, Project WM . The effect of temperature on systolic blood pressure. Blood Press Monitor 2007; 12: 195–203.

    Article  Google Scholar 

  41. Dyer AR, Elliott P . The INTERSALT study: relations of body mass index to blood pressure. INTERSALT Co-operative Research Group. J Hum Hypertens 1989; 3: 299–308.

    CAS  PubMed  Google Scholar 

  42. Maric-Bilkan C, Manigrasso MB . Sex differences in hypertension: contribution of the renin-angiotensin system. Gend Med 2012; 9: 287–291.

    Article  PubMed  Google Scholar 

  43. Reckelhoff JF . Gender differences in the regulation of blood pressure. Hypertension 2001; 37: 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  44. Lima LG, Moriguti JC, Ferriolli E, Lima NK . Effect of a single session of aerobic walking exercise on arterial pressure in community-living elderly individuals. Hypertens Res 2012; 35: 457–462.

    Article  PubMed  Google Scholar 

  45. Brandão Rondon MUP, Alves MJNN, Braga AMFW, Teixeira OTUN, Barretto ACP, Krieger EM et al. Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol 2002; 39: 676–682.

    Article  PubMed  Google Scholar 

  46. MacDonald JR . Potential causes, mechanisms, and implications of post exercise hypotension. J Hum Hypertens 2002; 16: 225–236.

    Article  CAS  PubMed  Google Scholar 

  47. Baumgart P . Circadian rhythm of blood pressure: internal and external time triggers. Chronobiol Int 1991; 8: 444–450.

    Article  CAS  PubMed  Google Scholar 

  48. Sorensen M, Hvidberg M, Hoffmann B, Andersen Z, Nordsborg R, Lillelund K et al. Exposure to road traffic and railway noise and associations with blood pressure and self-reported hypertension: a cohort study. Environ Health 2011; 10: 92.

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Kluizenaar Y, Gansevoort RT, Miedema HM, de Jong PE . Hypertension and road traffic noise exposure. J Occup Environ Med 2007; 49: 484–492.

    Article  PubMed  Google Scholar 

  50. Leon Bluhm G, Berglind N, Nordling E, Rosenlund M . Road traffic noise and hypertension. Occup Environ Med 2007; 64: 122–126.

    Article  PubMed  Google Scholar 

  51. Bodin T, Albin M, Ardö J, Stroh E, Ostergren PO, Björk J . Road traffic noise and hypertension: results from a cross-sectional public health survey in southern Sweden. Environ Health 2009; 8: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Barregard L, Bonde E, Ohrström E . Risk of hypertension from exposure to road traffic noise in a population-based sample. Occup Environ Med 2009; 66: 410–415.

    Article  CAS  PubMed  Google Scholar 

  53. Nelin TD, Joseph AM, Gorr MW, Wold LE . Direct and indirect effects of particulate matter on the cardiovascular system. Toxicol Lett 2012; 208: 293–299.

    Article  CAS  PubMed  Google Scholar 

  54. Task Force of the European Society of Cardiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996; 17: 354–381.

    Article  Google Scholar 

  55. Cowan MJ . Measurement of heart rate variability. West J Nurs Res 1995; 17: 32–48 discussion 101-11.

    Article  CAS  PubMed  Google Scholar 

  56. Valentini M, Parati G . Variables influencing heart rate. Prog Cardiovasc Dis 2009; 52: 11–19.

    Article  PubMed  Google Scholar 

  57. Stein PK, Bosner MS, Kleiger RE, Conger BM . Heart rate variability: a measure of cardiac autonomic tone. Am Heart J 1994; 127: 1376–1381.

    Article  CAS  PubMed  Google Scholar 

  58. Perini R, Veicsteinas A . Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol 2003; 90: 317–325.

    Article  PubMed  Google Scholar 

  59. Berntson GG, Bigger JT, Jr ., Eckberg DL, Grossman P, Kaufmann PG, Malik M et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 1997; 34: 623–648.

    Article  CAS  PubMed  Google Scholar 

  60. Tsuji H, Venditti FJ, Manders ES, Evans JC, Larson MG, Feldman CL et al. Determinants of heart rate variability. J Am Coll Cardiol 1996; 28: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  61. Cowan MJ, Pike K, Burr RL . Effects of gender and age on heart rate variability in healthy individuals and in persons after sudden cardiac arrest. J Electrocardiol 1994; 27: 1–9.

    Article  PubMed  Google Scholar 

  62. Devlin RB, Duncan KE, Jardim M, Schmitt MT, Rappold AG, Diaz-Sanchez D . Controlled exposure of healthy young volunteers to ozone causes cardiovascular effects. Circulation 2012; 126: 104–111.

    Article  CAS  PubMed  Google Scholar 

  63. Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R . Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect 2011; 119: 1373–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu S, Deng F, Niu J, Huang Q, Liu Y, Guo X . The relationship between traffic-related air pollutants and cardiac autonomic function in a panel of healthy adults: a further analysis with existing data. Inhal Toxicol 2011; 23: 289–303.

    Article  CAS  PubMed  Google Scholar 

  65. Wu CF, Kuo IC, Su TC, Li YR, Lin LY, Chan CC et al. Effects of personal exposure to particulate matter and ozone on arterial stiffness and heart rate variability in healthy adults. Am J Epidemiol 2010; 171: 1299–1309.

    Article  PubMed  Google Scholar 

  66. Graff DW, Cascio WE, Rappold A, Zhou HB, Huang YCT, Devlin RB . Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults. Environ Health Perspect 2009; 117: 1089–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vallejo M, Ruiz S, Hermosillo AG, Borja-Aburto VH, Cárdenas M . Ambient fine particles modify heart rate variability in young healthy adults. J Expo Sci Environ Epidemiol 2006; 16: 125–130.

    Article  CAS  PubMed  Google Scholar 

  68. Magari SR, Hauser R, Schwartz J, Williams PL, Smith TJ, Christiani DC . Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation 2001; 104: 986–991.

    Article  CAS  PubMed  Google Scholar 

  69. Weichenthal S, Kulka R, Bélisle P, Joseph L, Dubeau A, Martin C et al. Personal exposure to specific volatile organic compounds and acute changes in lung function and heart rate variability among urban cyclists. Environ Res 2012; 118: 118–123.

    Article  CAS  PubMed  Google Scholar 

  70. Mizukoshi A, Kumagai K, Yamamoto N, Noguchi M, Yoshiuchi K, Kumano H et al. A novel methodology to evaluate health impacts caused by VOC exposures using real-time VOC and Holter monitors. Int J Environ Res Public Health 2010; 7: 4127–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davoodi G, Sharif AY, Kazemisaeid A, Sadeghian S, Farahani AV, Sheikhvatan M et al. Comparison of heart rate variability and cardiac arrhythmias in polluted and clean air episodes in healthy individuals. Environ Health Prev Med 2010; 15: 217–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chow DC, Grandinetti A, Fernandez E, Sutton AJ, Elias T, Brooks B et al. Is volcanic air pollution associated with decreased heart-rate variability? Heart Asia 2010; 2: 36–41.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Brook R, Urch B, Dvonch J, Bard R, Speck M, Keeler G et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 2009; 54: 659–667.

    Article  CAS  PubMed  Google Scholar 

  74. Zareba W, Couderc J, Oberdorster G, Chalupa D, Cox C, Huang L et al. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhal Toxicol 2009; 21: 223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mills NL, Finlayson AE, Gonzalez MC, Törnqvist H, Barath S, Vink E et al. Diesel exhaust inhalation does not affect heart rhythm or heart rate variability. Heart 2011; 97: 544–550.

    Article  PubMed  Google Scholar 

  76. Wu S, Deng F, Niu J, Huang Q, Liu Y, Guo X . Exposures to PM2.5 components and heart rate variability in taxi drivers around the Beijing 2008 Olympic Games. Sci Total Environ 2011; 409: 2478–2485.

    Article  CAS  PubMed  Google Scholar 

  77. Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS . The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med 2007; 176: 370–376.

    Article  CAS  PubMed  Google Scholar 

  78. Tong H, Rappold AG, Diaz-Sanchez D, Steck SE, Berntsen J, Cascio WE et al. Omega-3 fatty acid supplementation appears to attenuate particulate air pollution-induced cardiac effects and lipid changes in healthy middle-aged adults. Environ Health Perspect 2012; 120: 952–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schneider A, Hampel R, Ibald-Mulli A, Zareba W, Schmidt G, Schneider R et al. Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease. Part Fibre Toxicol 2010; 7: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zanobetti A, Gold DR, Stone PH, Suh HH, Schwartz J, Coull BA et al. Reduction in heart rate variability with traffic and air pollution in patients with coronary artery disease. Environ Health Perspect 2010; 118: 324–330.

    Article  PubMed  Google Scholar 

  81. Holguín F, Téllez-Rojo MM, Hernández M, Cortez M, Chow JC, Watson JG et al. Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology 2003; 14: 521–527.

    Article  PubMed  Google Scholar 

  82. de Hartog JJ, Lanki T, Timonen KL, Hoek G, Janssen NA, Ibald-Mulli A et al. Associations between PM2.5 and heart rate variability are modified by particle composition and beta-blocker use in patients with coronary heart disease. Environ Health Perspect 2009; 117: 105–111.

    Article  CAS  PubMed  Google Scholar 

  83. Lipsett MJ, Tsai FC, Roger L, Woo M, Ostro BD . Coarse particles and heart rate variability among older adults with coronary artery disease in the Coachella Valley, California. Environ Health Perspect 2006; 114: 1215–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McBride SJ, Norris GA, Williams RW, Neas LM . Bayesian hierarchical modeling of cardiac response to particulate matter exposure. J Expo Sci Environ Epidemiol 2011; 21: 74–91.

    Article  PubMed  Google Scholar 

  85. Langrish JP, Li X, Wang S, Lee MM, Barnes GD, Miller MR et al. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ Health Perspect 2012; 120: 367–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Folino AF, Scapellato ML, Canova C, Maestrelli P, Bertorelli G, Simonato L et al. Individual exposure to particulate matter and the short-term arrhythmic and autonomic profiles in patients with myocardial infarction. Eur Heart J 2009; 30: 1614–1620.

    Article  CAS  PubMed  Google Scholar 

  87. Chuang KJ, Chan CC, Chen NT, Su TC, Lin LY . Effects of particle size fractions on reducing heart rate variability in cardiac and hypertensive patients. Environ Health Perspect 2005; 113: 1693–1697.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chan CC, Chuang KJ, Shiao GM, Lin LY . Personal exposure to submicrometer particles and heart rate variability in human subjects. Environ Health Perspect 2004; 112: 1063–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Scaife A, Barclay J, Hillis GS, Srinivasan J, Macdonald DW, Ross JA et al. Lack of effect of nitrogen dioxide exposure on heart rate variability in patients with stable coronary heart disease and impaired left ventricular systolic function. Occup Environ Med 2012; 69: 587–591.

    Article  CAS  PubMed  Google Scholar 

  90. Sullivan JH, Schreuder AB, Trenga CA, Liu SL, Larson TV, Koenig JQ et al. Association between short term exposure to fine particulate matter and heart rate variability in older subjects with and without heart disease. Thorax 2005; 60: 462–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Barclay JL, Miller BG, Dick S, Dennekamp M, Ford I, Hillis GS et al. A panel study of air pollution in subjects with heart failure: negative results in treated patients. Occup Environ Med 2009; 66: 325–334.

    Article  CAS  PubMed  Google Scholar 

  92. Tarkiainen TH, Timonen KL, Vanninen EJ, Alm S, Hartikainen JE, Pekkanen J . Effect of acute carbon monoxide exposure on heart rate variability in patients with coronary artery disease. Clin Physiol Funct Imaging 2003; 23: 98–102.

    Article  CAS  PubMed  Google Scholar 

  93. Timonen KL, Vanninen E, de Hartog J, Ibald-Mulli A, Brunekreef B, Gold DR et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: the ULTRA study. J Expo Sci Environ Epidemiol 2006; 16: 332–341.

    Article  CAS  PubMed  Google Scholar 

  94. Chang LT, Tang CS, Pan YZ, Chan CC . Association of heart rate variability of the elderly with personal exposure to PM1, PM1-2.5, and PM2.5-10. Bull Environ Contam Toxicol 2007; 79: 552–556.

    Article  CAS  PubMed  Google Scholar 

  95. Luttmann-Gibson H, Suh HH, Coull BA, Dockery DW, Sarnat SE, Schwartz J et al. Short-term effects of air pollution on heart rate variability in senior adults in Steubenville, Ohio. J Occup Environ Med 2006; 48: 780–788.

    Article  CAS  PubMed  Google Scholar 

  96. Pope CA, Hansen ML, Long RW, Nielsen KR, Eatough NL, Wilson WE et al. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ Health Perspect 2004; 112: 339–345.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B et al. Ambient pollution and heart rate variability. Circulation 2000; 101: 1267–1273.

    Article  CAS  PubMed  Google Scholar 

  98. Devlin RB, Ghio AJ, Kehrl H, Sanders G, Cascio W . Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J Suppl 2003; 40: 76s–80s.

    Article  CAS  PubMed  Google Scholar 

  99. Schwartz J, Litonjua A, Suh H, Verrier M, Zanobetti A, Syring M et al. Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 2005; 60: 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jia X, Song X, Shima M, Tamura K, Deng F, Guo X . Effects of fine particulate on heart rate variability in Beijing: a panel study of healthy elderly subjects. Int Arch Occup Environ Health 2012; 85: 97–107.

    Article  PubMed  Google Scholar 

  101. Luttmann-Gibson H, Suh HH, Coull BA, Dockery DW, Sarnat SE, Schwartz J et al. Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults. Occup Environ Med 2010; 67: 625–630.

    Article  CAS  PubMed  Google Scholar 

  102. Gong H, Linn WS, Terrell SL, Anderson KR, Clark KW, Sioutas C et al. Exposures of elderly volunteers with and without chronic obstructive pulmonary disease (COPD) to concentrated ambient fine particulate pollution. Inhal Toxicol 2004; 16: 731–744.

    Article  CAS  PubMed  Google Scholar 

  103. Gong H, Linn WS, Terrell SL, Clark KW, Geller MD, Anderson KR et al. Altered heart-rate variability in asthmatic and healthy volunteers exposed to concentrated ambient coarse particles. Inhal Toxicol 2004; 16: 335–343.

    Article  CAS  PubMed  Google Scholar 

  104. Tunnicliffe WS, Hilton MF, Harrison RM, Ayres JG . The effect of sulphur dioxide exposure on indices of heart rate variability in normal and asthmatic adults. Eur Respir J 2001; 17: 604–608.

    Article  CAS  PubMed  Google Scholar 

  105. Peretz A, Kaufman JD, Trenga CA, Allen J, Carlsten C, Aulet MR et al. Effects of diesel exhaust inhalation on heart rate variability in human volunteers. Environ Res 2008; 107: 178–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen JC, Cavallari JM, Stone PH, Christiani DC . Obesity is a modifier of autonomic cardiac responses to fine metal particulates. Environ Health Perspect 2007; 115: 1002–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hampel R, Breitner S, Schneider A, Zareba W, Kraus U, Cyrys J et al. Acute air pollution effects on heart rate variability are modified by SNPs involved in cardiac rhythm in individuals with diabetes or impaired glucose tolerance. Environ Res 2012; 112: 177–185.

    Article  CAS  PubMed  Google Scholar 

  108. Routledge HC, Manney S, Harrison RM, Ayres JG, Townend JN . Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects. Heart 2006; 92: 220–227.

    Article  CAS  PubMed  Google Scholar 

  109. Sivagangabalan G, Spears D, Masse S, Urch B, Brook RD, Silverman F et al. The effect of air pollution on spatial dispersion of myocardial repolarization in healthy human volunteers. J Am Coll Cardiol 2011; 57: 198–206.

    Article  PubMed  Google Scholar 

  110. Ren C, O'Neill MS, Park SK, Sparrow D, Vokonas P, Schwartz J . Ambient temperature, air pollution, and heart rate variability in an aging population. Am J Epidemiol 2011; 173: 1013–1021.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Yamamoto S, Iwamoto M, Inoue M, Harada N . Evaluation of the effect of heat exposure on the autonomic nervous system by heart rate variability and urinary catecholamines. J Occup Health 2007; 49: 199–204.

    Article  PubMed  Google Scholar 

  112. Bruce-Low SS, Cotterrell D, Jones GE . Heart rate variability during high ambient heat exposure. Aviat Space Environ M 2006; 77: 915–920.

    Google Scholar 

  113. Antelmi I, de Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ . Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol 2004; 93: 381–385.

    Article  PubMed  Google Scholar 

  114. Umetani K, Singer DH, McCraty R, Atkinson M . Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 1998; 31: 593–601.

    Article  CAS  PubMed  Google Scholar 

  115. Schmid K, Schönlebe J, Drexler H, Mueck-Weymann M . Associations between being overweight, variability in heart rate, and well-being in the young men. Cardiol Young 2010; 20: 54–59.

    Article  PubMed  Google Scholar 

  116. Hu K, Ivanov PCh, Hilton MF, Chen Z, Ayers RT, Stanley HE et al. Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior. Proc Natl Acad Sci USA 2004; 101: 18223–18227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pichon AP, de Bisschop C, Roulaud M, Denjean A, Papelier Y . Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sports Exerc 2004; 36: 1702–1708.

    Article  PubMed  Google Scholar 

  118. Grant CC, Viljoen M, van Rensburg DC, Wood PS . Heart rate variability assessment of the effect of physical training on autonomic cardiac control. Ann Noninvasive Electrocardiol 2012; 17: 219–229.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Young FL, Leicht AS . Short-term stability of resting heart rate variability: influence of position and gender. Appl Physiol Nutr Metab 2011; 36: 210–218.

    Article  PubMed  Google Scholar 

  120. Binkley PF, Haas GJ, Starling RC, Nunziata E, Hatton PA, Leier CV et al. Sustained augmentation of parasympathetic tone with angiotensin-converting enzyme inhibition in patients with congestive heart failure. J Am Coll Cardiol 1993; 21: 655–661.

    Article  CAS  PubMed  Google Scholar 

  121. Yeragani VK, Pohl R, Balon R, Ramesh C, Glitz D, Weinberg et al. Effect of imipramine treatment on heart rate variability measures. Neuropsychobiology 1992; 26: 27–32.

    Article  CAS  PubMed  Google Scholar 

  122. Kraus U, Schneider A, Breitner S, Hampel R, Ruckerl R, Pitz M et al. Individual daytime noise exposure during routine activities and heart rate variability in adults: a repeated measures study. Environ Health Perspect 2013; 121: 607–612.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Huang J, Deng F, Wu S, Lu H, Hao Y, Guo X . The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults. J Expo Sci Environ Epidemiol 2013; 23: 559–564.

    Article  CAS  PubMed  Google Scholar 

  124. Tomiyama H, Yamashina A . Non-invasive vascular function tests: their pathophysiological background and clinical application. Circ J 2010; 74: 24–33.

    Article  PubMed  Google Scholar 

  125. Poredos P, Jezovnik MK . Testing endothelial function and its clinical relevance. J Atheroscler Thromb 2012; 20: 1–8.

    Article  PubMed  Google Scholar 

  126. Akamatsu D, Sato A, Goto H, Watanabe T, Hashimoto M, Shimizu T et al. Nitroglycerin-mediated vasodilatation of the brachial artery may predict long-term cardiovascular events irrespective of the presence of atherosclerotic disease. J Atheroscler Thromb 2010; 17: 1266–1274.

    Article  CAS  PubMed  Google Scholar 

  127. Lee CR, Bass A, Ellis K, Tran B, Steele S, Caughey M et al. Relation between digital peripheral arterial tonometry and brachial artery ultrasound measures of vascular function in patients with coronary artery disease and in healthy volunteers. Am J Cardiol 2012; 109: 651–657.

    Article  PubMed  Google Scholar 

  128. Patvardhan EA, Heffernan KS, Ruan JM, Soffler MI, Karas RH, Kuvin JT . Assessment of vascular endothelial function with peripheral arterial tonometry: information at your fingertips? Cardiol Rev 2010; 18: 20–28.

    Article  PubMed  Google Scholar 

  129. Erdogmus B, Yazici B, Annakkaya AN, Bilgin C, Safak AA, Arbak et al. Intima-media thickness of the common carotid artery in highway toll collectors. J Clin Ultrasound 2006; 34: 430–433.

    Article  PubMed  Google Scholar 

  130. Simon A, Gariepy J, Chironi G, Megnien JL, Levenson J . Intima-media thickness: a new tool for diagnosis and treatment of cardiovascular risk. J Hypertens 2002; 20: 159–169.

    Article  CAS  PubMed  Google Scholar 

  131. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 2008; 21: 93–111 quiz 89-90.

    Article  PubMed  Google Scholar 

  132. Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol 2011; 300: H2–12.

    Article  CAS  PubMed  Google Scholar 

  133. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007; 23: 75–80.

    Article  PubMed  Google Scholar 

  134. Ciccone MM, Bilianou E, Balbarini A, Gesualdo M, Ghiadoni L, Metra M et al. Task force on: 'Early markers of atherosclerosis: influence of age and sex'. J Cardiovasc Med (Hagerstown) 2013; 14: 757–766.

    Article  Google Scholar 

  135. Kanters SD, Algra A, van Leeuwen MS, Banga JD . Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke 1997; 28: 665–671.

    Article  CAS  PubMed  Google Scholar 

  136. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002; 39: 257–265.

    Article  PubMed  Google Scholar 

  137. Magda SL, Ciobanu AO, Florescu M, Vinereanu D . Comparative reproducibility of the noninvasive ultrasound methods for the assessment of vascular function. Heart Vessels 2012; 28: 143–150.

    Article  PubMed  Google Scholar 

  138. Berry KL, Skyrme-Jones RA, Meredith IT . Occlusion cuff position is an important determinant of the time course and magnitude of human brachial artery flow-mediated dilation. Clin Sci (Lond) 2000; 99: 261–267.

    Article  CAS  Google Scholar 

  139. Betik AC, Luckham VB, Hughson RL . Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions. Am J Physiol Heart Circ Physiol 2004; 286: H442–H448.

    Article  CAS  PubMed  Google Scholar 

  140. Mannion TC, Vita JA, Keaney JF, Benjamin EJ, Hunter L, Polak JF . Non-invasive assessment of brachial artery endothelial vasomotor function: the effect of cuff position on level of discomfort and vasomotor responses. Vasc Med 1998; 3: 263–267.

    Article  CAS  PubMed  Google Scholar 

  141. Vogel RA, Corretti MC, Plotnick GD . A comparison of brachial artery flow-mediated vasodilation using upper and lower arm arterial occlusion in subjects with and without coronary risk factors. Clin Cardiol 2000; 23: 571–575.

    Article  CAS  PubMed  Google Scholar 

  142. Harris RA, Nishiyama SK, Wray DW, Tedjasaputra V, Bailey DM, Richardson RS . The effect of oral antioxidants on brachial artery flow-mediated dilation following 5 and 10 min of ischemia. Eur J Appl Physiol 2009; 107: 445–453.

    Article  CAS  PubMed  Google Scholar 

  143. Leeson P, Thorne S, Donald A, Mullen M, Clarkson P, Deanfield J . Non-invasive measurement of endothelial function: effect on brachial artery dilatation of graded endothelial dependent and independent stimuli. Heart 1997; 78: 22–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Peters SA, Bots ML . Carotid intima-media thickness studies: study design and data analysis. J Stroke 2013; 15: 38–48.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ras RT, Streppel MT, Draijer R, Zock PL . Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol 2012; 168: 344–351.

    Article  PubMed  Google Scholar 

  146. Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP et al. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 2003; 146: 168–174.

    Article  PubMed  Google Scholar 

  147. Rubinshtein R, Kuvin JT, Soffler M, Lennon RJ, Lavi S, Nelson RE et al. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J 2010; 31: 1142–1148.

    Article  PubMed  Google Scholar 

  148. Hamburg NM, Keyes MJ, Larson MG, Vasan RS, Schnabel R, Pryde MM et al. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation 2008; 117: 2467–2474.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hamburg NM, Palmisano J, Larson MG, Sullivan LM, Lehman BT, Vasan RS et al. Relation of brachial and digital measures of vascular function in the community: the Framingham heart study. Hypertension 2011; 57: 390–396.

    Article  CAS  PubMed  Google Scholar 

  150. Schnabel RB, Schulz A, Wild PS, Sinning CR, Wilde S, Eleftheriadis M et al. Noninvasive vascular function measurement in the community: cross-sectional relations and comparison of methods. Circ Cardiovasc Imaging 2011; 4: 371–380.

    Article  PubMed  Google Scholar 

  151. Iwakiri T, Yano Y, Sato Y, Hatakeyama K, Marutsuka K, Fujimoto S et al. Usefulness of carotid intima-media thickness measurement as an indicator of generalized atherosclerosis: findings from autopsy analysis. Atherosclerosis 2012; 225: 359–362.

    Article  CAS  PubMed  Google Scholar 

  152. Baldassarre D, Hamsten A, Veglia F, de Faire U, Humphries SE, Smit AJ et al. Measurements of carotid intima-media thickness and of interadventitia common carotid diameter improve prediction of cardiovascular events: results of the IMPROVE (Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population) Study. J Am Coll Cardiol 2012; 60: 1489–1499.

    Article  PubMed  Google Scholar 

  153. Touboul PJ, Vicaut E, Labreuche J, Belliard JP, Cohen S, Kownator S et al. Correlation between the Framingham risk score and intima media thickness: the Paroi Artérielle et Risque Cardio-vasculaire (PARC) study. Atherosclerosis 2007; 192: 363–369.

    Article  CAS  PubMed  Google Scholar 

  154. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M . Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 2007; 115: 459–467.

    Article  PubMed  Google Scholar 

  155. Rundell KW, Steigerwald MD, Fisk MZ . Montelukast prevents vascular endothelial dysfunction from internal combustion exhaust inhalation during exercise. Inhal Toxicol 2010; 22: 754–759.

    Article  CAS  PubMed  Google Scholar 

  156. Urch B, Brook JR, Wasserstein D, Brook RD, Rajagopalan S, Corey et al. Relative contributions of PM2.5 chemical constituents to acute arterial vasoconstriction in humans. Inhal Toxicol 2004; 16: 345–352.

    Article  CAS  PubMed  Google Scholar 

  157. Brook RD, Brook JR, Urch B, Vincent R, Rajagopalan S, Silverman F . Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation 2002; 105: 1534–1536.

    Article  CAS  PubMed  Google Scholar 

  158. Peretz A, Sullivan JH, Leotta DF, Trenga CA, Sands FN, Allen J et al. Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ Health Perspect 2008; 116: 937–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Williams R, Brook R, Bard R, Conner T, Shin H, Burnett R . Impact of personal and ambient-level exposures to nitrogen dioxide and particulate matter on cardiovascular function. Int J Environ Health Res 2012; 22: 71–91.

    Article  CAS  PubMed  Google Scholar 

  160. Brook RD, Shin HH, Bard RL, Burnett RT, Vette A, Croghan C et al. Exploration of the rapid effects of personal fine particulate matter exposure on arterial hemodynamics and vascular function during the same day. Environ Health Perspect 2011; 119: 688–694.

    Article  CAS  PubMed  Google Scholar 

  161. Cutrufello PT, Rundell KW, Smoliga JM, Stylianides GA . Inhaled whole exhaust and its effect on exercise performance and vascular function. Inhal Toxicol 2011; 23: 658–667.

    Article  CAS  PubMed  Google Scholar 

  162. Brook RD, Bard RL, Burnett RT, Shin HH, Vette A, Croghan C et al. Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup Environ Med 2011; 68: 224–230.

    Article  PubMed  Google Scholar 

  163. Briet M, Collin C, Laurent S, Tan A, Azizi M, Agharazii M et al. Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension 2007; 50: 970–976.

    Article  CAS  PubMed  Google Scholar 

  164. Dales R, Liu L, Szyszkowicz M, Dalipaj M, Willey J, Kulka R et al. Particulate air pollution and vascular reactivity: the bus stop study. Int Arch Occup Environ Health 2007; 81: 159–164.

    Article  CAS  PubMed  Google Scholar 

  165. Rundell KW, Hoffman JR, Caviston R, Bulbulian R, Hollenbach AM . Inhalation of ultrafine and fine particulate matter disrupts systemic vascular function. Inhal Toxicol 2007; 19: 133–140.

    Article  CAS  PubMed  Google Scholar 

  166. O'Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, Economides PA et al. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation 2005; 111: 2913–2920.

    Article  PubMed  Google Scholar 

  167. Schneider A, Neas L, Herbst MC, Case M, Williams RW, Cascio W et al. Endothelial dysfunction: associations with exposure to ambient fine particles in diabetic individuals. Environ Health Perspect 2008; 116: 1666–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hashemi M, Afshani MR, Mansourian M, Poursafa P, Kelishadi R . Association of particulate air pollution and secondhand smoke on endothelium-dependent brachial artery dilation in healthy children. J Res Med Sci 2012; 17: 317–321.

    PubMed  PubMed Central  Google Scholar 

  169. Pope CA, Hansen JC, Kuprov R, Sanders MD, Anderson MN, Eatough DJ . Vascular function and short-term exposure to fine particulate air pollution. J Air Waste Manag Assoc 2011; 61: 858–863.

    Article  CAS  PubMed  Google Scholar 

  170. Brauner EV, Moller P, Barregard L, Dragsted LO, Glasius M, Wahlin et al. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part Fibre Toxicol 2008; 5: 9.

    Article  CAS  Google Scholar 

  171. Iannuzzi A, Verga MC, Renis M, Schiavo A, Salvatore V, Santoriello C et al. Air pollution and carotid arterial stiffness in children. Cardiol Young 2010; 20: 186–190.

    Article  PubMed  Google Scholar 

  172. Lanzinger S, Breitner S, Neas L, Cascio W, Diaz-Sanchez D, Hinderliter A et al. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes. Environ Res 2014; 134c: 331–338.

    Article  CAS  Google Scholar 

  173. Zanobetti A, Luttmann-Gibson H, Horton ES, Cohen A, Coull BA, Hoffmann B et al. Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: a repeated-measures study. Environ Health Perspect 2014; 122: 242–248.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Widlansky ME, Vita JA, Keyes MJ, Larson MG, Hamburg NM, Levy D et al. Relation of season and temperature to endothelium-dependent flow-mediated vasodilation in subjects without clinical evidence of cardiovascular disease (from the Framingham Heart Study). Am J Cardiol 2007; 100: 518–523.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE . Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 1994; 24: 471–476.

    Article  CAS  PubMed  Google Scholar 

  176. Ciccone MM, Balbarini A, Teresa Porcelli M, Santoro D, Cortese F, Scicchitano et al. Carotid artery intima-media thickness: normal and percentile values in the Italian population (camp study). Eur J Cardiovasc Prev Rehabil 2011; 18: 650–655.

    Article  PubMed  Google Scholar 

  177. Kablak-Ziembicka A, Przewlocki T, Tracz W, Pieniazek P, Musialek P, Sokolowski A . Gender differences in carotid intima-media thickness in patients with suspected coronary artery disease. Am J Cardiol 2005; 96: 1217–1222.

    Article  PubMed  Google Scholar 

  178. Llewellyn TL, Chaffin ME, Berg KE, Meendering JR . The relationship between shear rate and flow-mediated dilation is altered by acute exercise. Acta Physiol (Oxf) 2012; 205: 394–402.

    Article  CAS  Google Scholar 

  179. Harris RA, Padilla J, Hanlon KP, Rink LD, Wallace JP . The flow-mediated dilation response to acute exercise in overweight active and inactive men. Obesity (Silver Spring) 2008; 16: 578–584.

    Article  Google Scholar 

  180. McGowan CL, Levy AS, Millar PJ, Guzman JC, Morillo CA, McCartney N et al. Acute vascular responses to isometric handgrip exercise and effects of training in persons medicated for hypertension. Am J Physiol Heart Circ Physiol 2006; 291: H1797–H1802.

    Article  CAS  PubMed  Google Scholar 

  181. Birk GK, Dawson EA, Batterham AM, Atkinson G, Cable T, Thijssen DH et al. Effects of exercise intensity on flow mediated dilation in healthy humans. Int J Sports Med 2012; 34: 409–414.

    Article  PubMed  Google Scholar 

  182. Hijmering ML, de Lange DW, Lorsheyd A, Kraaijenhagen RJ, van de Wiel A . Binge drinking causes endothelial dysfunction, which is not prevented by wine polyphenols: a small trial in healthy volunteers. Neth J Med 2007; 65: 29–35.

    CAS  PubMed  Google Scholar 

  183. Shechter M, Shalmon G, Scheinowitz M, Koren-Morag N, Feinberg MS, Harats D et al. Impact of acute caffeine ingestion on endothelial function in subjects with and without coronary artery disease. Am J Cardiol 2011; 107: 1255–1261.

    Article  CAS  PubMed  Google Scholar 

  184. Papamichael CM, Aznaouridis KA, Karatzis EN, Karatzi KN, Stamatelopoulos KS, Vamvakou G et al. Effect of coffee on endothelial function in healthy subjects: the role of caffeine. Clin Sci (Lond) 2005; 109: 55–60.

    Article  CAS  Google Scholar 

  185. Suzuki K, Elkind MS, Boden-Albala B, Jin Z, Berry G, Di Tullio MR et al. Moderate alcohol consumption is associated with better endothelial function: a cross sectional study. BMC Cardiovasc Disord 2009; 9: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bau PF, Bau CH, Naujorks AA, Rosito GA, Fuchs FD . Diurnal variation of vascular diameter and reactivity in healthy young men. Braz J Med Biol Res 2008; 41: 500–503.

    Article  CAS  PubMed  Google Scholar 

  187. Etsuda H, Takase B, Uehata A, Kusano H, Hamabe A, Kuhara R et al. Morning attenuation of endothelium-dependent, flow-mediated dilation in healthy young men: possible connection to morning peak of cardiac events? Clin Cardiol 1999; 22: 417–421.

    Article  CAS  PubMed  Google Scholar 

  188. Schmidt F, Kolle K, Kreuder K, Schnorbus B, Wild P, Hechtner M et al. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease. Clin Res Cardiol 2014.

  189. Salvi S . Health effects of ambient air pollution in children. Paediatr Respir Rev 2007; 8: 275–280.

    Article  PubMed  Google Scholar 

  190. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A et al. Standardisation of spirometry. Eur Respir J 2005; 26: 319–338.

    Article  CAS  PubMed  Google Scholar 

  191. Lippmann M, Spektor DM . Peak flow rate changes in O3 exposed children: spirometry vs miniWright flow meters. J Expo Anal Environ Epidemiol 1998; 8: 101–107.

    CAS  PubMed  Google Scholar 

  192. Stoller JK, Basheda S, Laskowski D, Goormastic M, McCarthy K . Trial of standard versus modified expiration to achieve end-of-test spirometry criteria. Am Rev Respir Dis 1993; 148: 275–280.

    Article  CAS  PubMed  Google Scholar 

  193. Ruppel GL, Enright PL . Pulmonary function testing. Respir Care 2012; 57: 165–175.

    Article  PubMed  Google Scholar 

  194. Crapo RO, Jensen RL . Standards and interpretive issues in lung function testing. Respir Care 2003; 48: 764–772.

    PubMed  Google Scholar 

  195. Hankinson JL, Odencrantz JR, Fedan KB . Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999; 159: 179–187.

    Article  CAS  PubMed  Google Scholar 

  196. D'Angelo E, Prandi E, Milic-Emili J . Dependence of maximal flow-volume curves on time course of preceding inspiration. J Appl Physiol 1993; 75: 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  197. Becklake MR . Concepts of normality applied to the measurement of lung function. Am J Med 1986; 80: 1158–1164.

    Article  CAS  PubMed  Google Scholar 

  198. Klaassen C, Watkins JB., III . Casarett and Doull's Essentials of Toxicology. McGraw-Hill: New York. 2003.

    Google Scholar 

  199. Al-Ashkar F, Mehra R, Mazzone PJ . Interpreting pulmonary function tests: recognize the pattern, and the diagnosis will follow. Cleve Clin J Med. 2003; 70: 866 8, 71-3, passim.

    Article  PubMed  Google Scholar 

  200. Li S, Williams G, Jalaludin B, Baker P . Panel studies of air pollution on children's lung function and respiratory symptoms: a literature review. J Asthma 2012; 49: 895–910.

    Article  PubMed  Google Scholar 

  201. Cole-Hunter T, Morawska L, Stewart I, Hadaway M, Jayaratne R, Solomon C . Utility of an alternative bicycle commute route of lower proximity to motorised traffic in decreasing exposure to ultra-fine particles, respiratory symptoms and airway inflammation — a structured exposure experiment. Environ Health 2013; 12: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jarjour S, Jerrett M, Westerdahl D, de Nazelle A, Hanning C, Daly L et al. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study. Environ Health 2013; 12: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Fan ZH, Meng QY, Weisel C, Laumbach R, Ohman-Strickland P, Shalat S et al. Acute exposure to elevated PM2.5 generated by traffic and cardiopulmonary health effects in healthy older adults. J Expo Sci Environ Epidemiol 2009; 19: 525–533.

    Article  CAS  PubMed  Google Scholar 

  204. Lagorio S, Forastiere F, Pistelli R, Iavarone I, Michelozzi P, Fano V et al. Air pollution and lung function among susceptible adult subjects: a panel study. Environ Health 2006; 5: 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Langrish JP, Lundbäck M, Barath S, Söderberg S, Mills NL, Newby DE et al. Exposure to nitrogen dioxide is not associated with vascular dysfunction in man. Inhal Toxicol 2010; 22: 192–198.

    Article  CAS  PubMed  Google Scholar 

  206. Barck C, Sandstrom T, Lundahl J, Hallden G, Svartengren M, Strand V et al. Ambient level of NO2 augments the inflammatory response to inhaled allergen in asthmatics. Respir Med 2002; 96: 907–917.

    Article  CAS  PubMed  Google Scholar 

  207. Gong H, Linn WS, Clark KW, Anderson KR, Geller MD, Sioutas C . Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhal Toxicol 2005; 17: 123–132.

    Article  CAS  PubMed  Google Scholar 

  208. Cowie CT, Ezz W, Xuan W, Lilley W, Rose N, Rae M et al. A randomised cross-over cohort study of exposure to emissions from a road tunnel ventilation stack. BMJ Open 2012; 2.

  209. Hsu SO, Ito K, Lippmann M . Effects of thoracic and fine PM and their components on heart rate and pulmonary function in COPD patients. J Expo Sci Environ Epidemiol 2011; 21: 464–472.

    Article  CAS  PubMed  Google Scholar 

  210. Foster WM, Brown RH, Macri K, Mitchell CS . Bronchial reactivity of healthy subjects: 18-20 h postexposure to ozone. J Appl Physiol 2000; 89: 1804–1810.

    Article  CAS  PubMed  Google Scholar 

  211. Meo SA, Al-Drees AM, Rasheed S, Meo IM, Khan MM, Al-Saadi MM et al. Effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water. Int J Occup Med Environ Health 2009; 22: 35–41.

    PubMed  Google Scholar 

  212. Uzma N, Salar BM, Kumar BS, Aziz N, David MA, Reddy VD . Impact of organic solvents and environmental pollutants on the physiological function in petrol filling workers. Int J Environ Res Public Health 2008; 5: 139–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Jones AY, Lam PK, Gohel MD . Respiratory health of road-side vendors in a large industrialized city. Environ Sci Pollut Res Int 2008; 15: 150–154.

    Article  PubMed  Google Scholar 

  214. Hong YC, Leem JH, Lee KH, Park DH, Jang JY, Kim ST et al. Exposure to air pollution and pulmonary function in university students. Int Arch Occup Environ Health 2005; 78: 132–138.

    Article  CAS  PubMed  Google Scholar 

  215. Wu S, Deng F, Hao Y, Shima M, Wang X, Zheng C et al. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The Healthy Volunteer Natural Relocation study. J Hazard Mater 2013; 260C: 183–191.

    Article  CAS  Google Scholar 

  216. Karita K, Yano E, Jinsart W, Boudoung D, Tamura K . Respiratory symptoms and pulmonary function among traffic police in Bangkok, Thailand. Arch Environ Health 2001; 56: 467–470.

    Article  CAS  PubMed  Google Scholar 

  217. Larsson BM, Grunewald J, Sköld CM, Lundin A, Sandström T, Eklund A et al. Limited airway effects in mild asthmatics after exposure to air pollution in a road tunnel. Respir Med 2010; 104: 1912–1918.

    Article  PubMed  Google Scholar 

  218. Gong H, Linn WS, Clark KW, Anderson KR, Sioutas C, Alexis NE et al. Exposures of healthy and asthmatic volunteers to concentrated ambient ultrafine particles in los angeles. Inhal Toxicol 2008; 20: 533–545.

    Article  CAS  PubMed  Google Scholar 

  219. Penttinen P, Timonen KL, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen J . Number concentration and size of particles in urban air: effects on spirometric lung function in adult asthmatic subjects. Environ Health Perspect 2001; 109: 319–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hussain S, Laumbach R, Coleman J, Youssef H, Kelly-McNeil K, Ohman-Strickland et al. Controlled exposure to diesel exhaust causes increased nitrite in exhaled breath condensate among subjects with asthma. J Occup Environ Med 2012; 54: 1186–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Beckett WS, Russi MB, Haber AD, Rivkin RM, Sullivan JR, Tameroglu Z et al. Effect of nitrous acid on lung function in asthmatics: a chamber study. Environ Health Perspect 1995; 103: 372–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Korrick SA, Neas LM, Dockery DW, Gold DR, Allen GA, Hill LB et al. Effects of ozone and other pollutants on the pulmonary function of adult hikers. Environ Health Perspect 1998; 106: 93–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Gilliland FD, Linn W, Rappaport E, Avol E, Gong H, Peters J . Effect of spirometer temperature on FEV1 in a longitudinal epidemiological study. Occup Environ Med 1999; 56: 718–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Willemse BW, Postma DS, Timens W, ten Hacken NH . The impact of smoking cessation on respiratory symptoms, lung function, airway hyperresponsiveness and inflammation. Eur Respir J 2004; 23: 464–476.

    Article  CAS  PubMed  Google Scholar 

  225. Gabbay E, Fisher A, Small T, Leonard A, Corris P . Exhaled single-breath nitric oxide measurements are reproducible, repeatable and reflect levels of nitric oxide found in the lower airways. Eur Respir J 1998; 11: 467–472.

    Article  CAS  PubMed  Google Scholar 

  226. Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S . Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 1991; 181: 852–857.

    Article  CAS  PubMed  Google Scholar 

  227. Van Amsterdam J, Nierkens S, Vos S, Opperhuizen A, Van Loveren H, Steerenberg P . Exhaled nitric oxide: A novel biomarker of adverse respiratory health effects in epidemiological studies. Arch Environ Health 2000; 55: 418–423.

    Article  CAS  PubMed  Google Scholar 

  228. Alderton WK, Cooper CE, Knowles RG . Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357: 593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Taylor D, Pijnenburg M, Smith A, De Jongste J . Exhaled nitric oxide measurements: clinical application and interpretation. Thorax 2006; 61: 817–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Barnes P, Kharitonov S . Exhaled nitric oxide: a new lung function test. Thorax 1996; 51: 233–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Laumbach RJ, Kipen HM . Acute effects of motor vehicle traffic-related air pollution exposures on measures of oxidative stress in human airways. Ann N Y Acad Sci 2010; 1203: 107–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. La Grutta S, Ferrante G, Malizia V, Cibella F, Viegi G . Environmental effects on fractional exhaled nitric oxide in allergic children. J Allergy (Cairo) 2012; 2012: 916926.

    Google Scholar 

  233. Boot JD, de Ridder L, de Kam ML, Calderon C, Mascelli MA, Diamant Z . Comparison of exhaled nitric oxide measurements between NIOX MINO electrochemical and Ecomedics chemiluminescence analyzer. Respir Med. 2008; 102: 1667–1671.

    Article  CAS  PubMed  Google Scholar 

  234. Bohadana A, Michaely JP, Teculescu D, Wild P . Reproducibility of exhaled nitric oxide in smokers and non-smokers: relevance for longitudinal studies. BMC Pulm Med 2008; 8: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kharitonov S, Gonio F, Kelly C, Meah S, Barnes P . Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children. Eur Respir J 2003; 21: 433–438.

    Article  CAS  PubMed  Google Scholar 

  236. American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med 2005; 171: 912–930.

    Article  Google Scholar 

  237. Silkoff P, Carlson M, Bourke T, Katial R, Ogren E, Szefler S . The Aerocrine exhaled nitric oxide monitoring system NIOX is cleared by the US Food and Drug Administration for monitoring therapy in asthma. J Allergy Clin Immunol 2004; 114: 1241–1256.

    Article  CAS  Google Scholar 

  238. Silkoff PE, Wakita S, Chatkin J, Ansarin K, Gutierrez C, Caramori M et al. Exhaled nitric oxide after beta2-agonist inhalation and spirometry in asthma. Am J Respir Crit Care Med 1999; 159: 940–944.

    Article  CAS  PubMed  Google Scholar 

  239. Gabriele C, Pijnenburg MW, Monti F, Hop W, Bakker ME, de Jongste JC . The effect of spirometry and exercise on exhaled nitric oxide in asthmatic children. Pediatr Allergy Immunol 2005; 16: 243–247.

    Article  PubMed  Google Scholar 

  240. Deykin A, Halpern O, Massaro AF, Drazen JM, Israel E . Expired nitric oxide after bronchoprovocation and repeated spirometry in patients with asthma. Am J Respir Crit Care Med 1998; 157: 769–775.

    Article  CAS  PubMed  Google Scholar 

  241. Garriga T, Labrador-Horrillo M, Guillén M, Luengo O, Eseverri JL, Guilarte M et al. Spirometric maneuvers and inhaled salbutamol do not affect exhaled nitric oxide measurements among patients with allergic asthma. Respiration 2012; 83: 239–244.

    Article  CAS  PubMed  Google Scholar 

  242. Korn S, Telke I, Kornmann O, Buhl R . Measurement of exhaled nitric oxide: comparison of different analysers. Respirology 2010; 15: 1203–1208.

    Article  PubMed  Google Scholar 

  243. Brooks CR, Brogan SB, van Dalen CJ, Lampshire PK, Crane J, Douwes J . Measurement of exhaled nitric oxide in a general population sample: a comparison of the Medisoft HypAir FE(NO) and Aerocrine NIOX analyzers. J Asthma 2011; 48: 324–328.

    Article  CAS  PubMed  Google Scholar 

  244. Schiller B, Hammer J, Barben J, Trachsel D . Comparability of a hand-held nitric oxide analyser with online and offline chemiluminescence-based nitric oxide measurement. Pediatr Allergy Immunol 2009; 20: 679–685.

    Article  PubMed  Google Scholar 

  245. Borrill Z, Clough D, Truman N, Morris J, Langley S, Singh D . A comparison of exhaled nitric oxide measurements performed using three different analysers. Respir Med 2006; 100: 1392–1396.

    Article  PubMed  Google Scholar 

  246. Flamant-Hulin M, Caillaud D, Sacco P, Penard-Morand C, Annesi-Maesano I . Air pollution and increased levels of fractional exhaled nitric oxide in children with no history of airway damage. J Toxicol Environ Health A 2010; 73: 272–283.

    Article  CAS  PubMed  Google Scholar 

  247. Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nunez M, Sienra-Monge J, Ramirez-Aguilar M et al. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City schoolchildren. Environ Health Perspect 2008; 116: 832–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Berhane K, Zhang Y, Linn W, Rappaport E, Bastain T, Salam M et al. The effect of ambient air pollution on exhaled nitric oxide in the Children's Health Study. Eur Respir J 2011; 37: 1029–1036.

    Article  CAS  PubMed  Google Scholar 

  249. Travers J, Marsh S, Aldington S, Williams M, Shirtcliffe P, Pritchard A et al. Reference ranges for exhaled nitric oxide derived from a random community survey of adults. Am J Respir Crit Care Med 2007; 176: 238–242.

    Article  CAS  PubMed  Google Scholar 

  250. Kharitonov SA, Yates D, Robbins RA, Logan-Sinclair R, Shinebourne EA, Barnes PJ . Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994; 343: 133–135.

    Article  CAS  PubMed  Google Scholar 

  251. Scarpa MC, Kulkarni N, Maestrelli P . The role of non-invasive biomarkers in detecting acute respiratory effects of traffic-related air pollution. Clin Exp Allergy 2014; 44: 1100–1118.

    Article  CAS  PubMed  Google Scholar 

  252. Zuurbier M, Hoek G, Oldenwening M, Meliefste K, van den Hazel P, Brunekreef B . Respiratory effects of commuters' exposure to air pollution in traffic. Epidemiology 2011; 22: 219–227.

    Article  PubMed  Google Scholar 

  253. Strak M, Boogaard H, Meliefste K, Oldenwening M, Zuurbier M, Brunekreef B et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med 2010; 67: 118–124.

    Article  PubMed  Google Scholar 

  254. Van Amsterdam JG, Verlaan BP, Van Loveren H, Elzakker BG, Vos SG, Opperhuizen A et al. Air pollution is associated with increased level of exhaled nitric oxide in nonsmoking healthy subjects. Arch Environ Health 1999; 54: 331–335.

    Article  CAS  PubMed  Google Scholar 

  255. Barath S, Mills NL, Adelroth E, Olin AC, Blomberg A . Diesel exhaust but not ozone increases fraction of exhaled nitric oxide in a randomized controlled experimental exposure study of healthy human subjects. Environ Health 2013; 12: 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Steerenberg P, Snelder J, Fischer P, Vos J, van Loveren H, van Amsterdam J . Increased exhaled nitric oxide on days with high outdoor air pollution is of endogenous origin. Eur Respir J 1999; 13: 334–337.

    Article  CAS  PubMed  Google Scholar 

  257. Bos I, De Boever P, Vanparijs J, Pattyn N, Panis LI, Meeusen R . Subclinical effects of aerobic training in urban environment. Med Sci Sports Exerc 2013; 45: 439–447.

    Article  PubMed  Google Scholar 

  258. Huang W, Wang G, Lu SE, Kipen H, Wang Y, Hu M et al. Inflammatory and oxidative stress responses of healthy young adults to changes in air quality during the Beijing olympics. Am J Respir Crit Care Med 2012; 186: 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Pietropaoli AP, Frampton MW, Hyde RW, Morrow PE, Oberdörster G, Cox C et al. Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol 2004; 16: 59–72.

    Article  CAS  PubMed  Google Scholar 

  260. Jacobs L, Nawrot T, de Geus B, Meeusen R, Degraeuwe B, Bernard A et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health 2010; 9: 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Olin AC, Stenfors N, Torén K, Blomberg A, Helleday R, Ledin MC et al. Nitric oxide (NO) in exhaled air after experimental ozone exposure in humans. Respir Med 2001; 95: 491–495.

    Article  CAS  PubMed  Google Scholar 

  262. Lin WW, Huang W, Zhu T, Hu M, Brunekreef B, Zhang YH et al. Acute respiratory inflammation in children and black carbon in ambient air before and during the 2008 Beijing olympics. Environ Health Perspect 2011; 119: 1507–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Murata A, Kida K, Hasunuma H, Kanegae H, Ishimaru Y, Motegi T et al. Environmental influence on the measurement of exhaled nitric oxide concentration in school children: special reference to methodology. J Nihon Med Sch 2007; 74: 30–36.

    Article  Google Scholar 

  264. Graveland H, Van Roosbroeck S, Rensen W, Brunekreef B, Gehring U . Air pollution and exhaled nitric oxide in Dutch schoolchildren. Occup Environ Med 2011; 68: 551–556.

    Article  CAS  PubMed  Google Scholar 

  265. Dales R, Wheeler A, Mahmud M, Frescura A, Smith-Doiron M, Nethery E et al. The influence of living near roadways on spirometry and exhaled nitric oxide in elementary schoolchildren. Environ Health Perspect 2008; 116: 1423–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Nickmilder M, de Burbure C, Carbonnelle S, Sylviane C, Dumont X, Xavier D et al. Increase of exhaled nitric oxide in children exposed to low levels of ambient ozone. J Toxicol Environ Health A 2007; 70: 270–274.

    Article  CAS  PubMed  Google Scholar 

  267. Fischer P, Steerenberg P, Snelder J, van Loveren H, van Amsterdam J . Association between exhaled nitric oxide, ambient air pollution and respiratory health in school children. Int Arch Occup Environ Health 2002; 75: 348–353.

    Article  CAS  PubMed  Google Scholar 

  268. Buonanno G, Marks GB, Morawska L . Health effects of daily airborne particle dose in children: direct association between personal dose and respiratory health effects. Environ Pollut 2013; 180C: 246–250.

    Article  CAS  Google Scholar 

  269. Maestrelli P, Canova C, Scapellato ML, Visentin A, Tessari R, Bartolucci GB et al. Personal exposure to particulate matter is associated with worse health perception in adult asthma. J Investig Allergol Clin Immunol 2011; 21: 120–128.

    CAS  PubMed  Google Scholar 

  270. Qian Z, Lin HM, Chinchilli VM, Lehman EB, Duan Y, Craig TJ et al. Interaction of ambient air pollution with asthma medication on exhaled nitric oxide among asthmatics. Arch Environ Occup Health 2009; 64: 168–176.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Sarnat SE, Raysoni AU, Li WW, Holguin F, Johnson BA, Flores Luevano S et al. Air pollution and acute respiratory response in a panel of asthmatic children along the U.S.-Mexico border. Environ Health Perspect 2012; 120: 437–444.

    Article  CAS  PubMed  Google Scholar 

  272. Liu L, Poon R, Chen L, Frescura AM, Montuschi P, Ciabattoni G et al. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 2009; 117: 668–674.

    Article  CAS  PubMed  Google Scholar 

  273. Sarnat SE, Raysoni AU, Li WW, Holguin F, Johnson BA, Flores Luevano S et al. Air pollution and acute respiratory response in a panel of asthmatic children along the U.S.-Mexico border. Environ Health Perspect 2012; 120: 437–444.

    Article  CAS  PubMed  Google Scholar 

  274. Liu L, Poon R, Chen L, Frescura AM, Montuschi P, Ciabattoni G et al. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ Health Perspect 2009; 117: 668–674.

    Article  CAS  PubMed  Google Scholar 

  275. Koenig JQ, Jansen K, Mar TF, Lumley T, Kaufman J, Trenga CA et al. Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environ Health Perspect 2003; 111: 1625–1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Delfino RJ, Staimer N, Gillen D, Tjoa T, Sioutas C, Fung K et al. Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect 2006; 114: 1736–1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Adamkiewicz G, Ebelt S, Syring M, Slater J, Speizer F, Schwartz J et al. Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax 2004; 59: 204–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Delfino RJ, Staimer N, Tjoa T, Arhami M, Polidori A, Gillen DL et al. Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology 2010; 21: 892–902.

    Article  PubMed  Google Scholar 

  279. Steerenberg PA, Bischoff EW, de Klerk A, Verlaan AP, Jongbloets LM, van Loveren H et al. Acute effect of air pollution on respiratory complaints, exhaled NO and biomarkers in nasal lavages of allergic children during the pollen season. Int Arch Allergy Immunol 2003; 131: 127–137.

    Article  CAS  PubMed  Google Scholar 

  280. Martins PC, Valente J, Papoila AL, Caires I, Araújo-Martins J, Mata et al. Airways changes related to air pollution exposure in wheezing children. Eur Respir J 2012; 39: 246–253.

    Article  CAS  PubMed  Google Scholar 

  281. Mauer MP, Hoen R, Jourd'heuil D . FE NO concentrations in World Trade Center responders and controls, 6 years post-9/11. Lung 2011; 189: 295–303.

    Article  PubMed  Google Scholar 

  282. Bhowmik A, Seemungal TA, Donaldson GC, Wedzicha JA . Effects of exacerbations and seasonality on exhaled nitric oxide in COPD. Eur Respir J 2005; 26: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  283. Seys SF, Daenen M, Dilissen E, Van Thienen R, Bullens DM, Hespel et al. Effects of high altitude and cold air exposure on airway inflammation in patients with asthma. Thorax 2013; 68: 906–913.

    Article  PubMed  Google Scholar 

  284. Barreto M, Villa MP, Monti F, Bohmerova Z, Martella S, Montesano M et al. Additive effect of eosinophilia and atopy on exhaled nitric oxide levels in children with or without a history of respiratory symptoms. Pediatr Allergy Immunol 2005; 16: 52–58.

    Article  PubMed  Google Scholar 

  285. Wong GW, Liu EK, Leung TF, Yung E, Ko FW, Hui DS et al. High levels and gender difference of exhaled nitric oxide in Chinese schoolchildren. Clin Exp Allergy 2005; 35: 889–893.

    Article  CAS  PubMed  Google Scholar 

  286. Olin A, Rosengren A, Thelle D, Lissner L, Bake B, Toren K . Height, age, and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. Chest 2006; 130: 1319–1325.

    Article  PubMed  Google Scholar 

  287. Buchvald F, Baraidi E, Carraro S, Gaston B, De Jongste J, Pijnenburg M et al. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years. J Allergy Clin Immunol 2005; 115: 1130–1136.

    Article  CAS  PubMed  Google Scholar 

  288. Kovesi T, Kulka R, Dales R . Exhaled nitric oxide concentration is affected by age, height, and race in healthy 9- to 12-year-old children. Chest 2008; 133: 169–175.

    Article  CAS  PubMed  Google Scholar 

  289. Kissoon N, Duckworth LJ, Blake KV, Murphy SP, Taylor CL, DeNicola LR et al. Exhaled nitric oxide concentrations: online versus offline values in healthy children. Pediatr Pulmonol 2002; 33: 283–292.

    Article  PubMed  Google Scholar 

  290. Avital A, Uwyyed K, Berkman N, Bar-Yishay E, Godfrey S, Springer C . Exhaled nitric oxide is age-dependent in asthma. Pediatr Pulmonol 2003; 36: 433–438.

    Article  PubMed  Google Scholar 

  291. Malinovschi A, Janson C, Holmkvist T, Norbäck D, Meriläinen P, Högman M . Effect of smoking on exhaled nitric oxide and flow-independent nitric oxide exchange parameters. Eur Respir J 2006; 28: 339–345.

    Article  CAS  PubMed  Google Scholar 

  292. Kharitonov SA, Robbins RA, Yates D, Keatings V, Barnes PJ . Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am J Respir Crit Care Med 1995; 152: 609–612.

    Article  CAS  PubMed  Google Scholar 

  293. Antosova M, Bencova A, Psenkova A, Herle D, Rozborilova E . Exhaled nitric oxide - circadian variations in healthy subjects. Eur J Med Res 2009; 14: 6–8.

    PubMed  PubMed Central  Google Scholar 

  294. Mattes J, Storm van's Gravesande K, Moeller C, Moseler M, Brandis M, Kuehr J . Circadian variation of exhaled nitric oxide and urinary eosinophil protein X in asthmatic and healthy children. Pediatr Res 2002; 51: 190–194.

    Article  CAS  PubMed  Google Scholar 

  295. Stark H, Purokivi M, Kiviranta J, Randell J, Tukiainen H . Short-term and seasonal variations of exhaled and nasal NO in healthy subjects. Respir Med 2007; 101: 265–271.

    Article  PubMed  Google Scholar 

  296. Olin AC, Aldenbratt A, Ekman A, Ljungkvist G, Jungersten L, Alving K et al. Increased nitric oxide in exhaled air after intake of a nitrate-rich meal. Respir Med 2001; 95: 153–158.

    Article  CAS  PubMed  Google Scholar 

  297. Taylor ES, Smith AD, Cowan JO, Herbison GP, Taylor DR . Effect of caffeine ingestion on exhaled nitric oxide measurements in patients with asthma. Am J Respir Crit Care Med 2004; 169: 1019–1021.

    Article  PubMed  Google Scholar 

  298. Bruce C, Yates DH, Thomas PS . Caffeine decreases exhaled nitric oxide. Thorax 2002; 57: 361–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Piirilä P, Rouhos A, Kainu A, Sovijärvi AR . Reduction of fractional exhaled nitric oxide (FENO) and its variation by mouth wash. Scand J Clin Lab Invest 2012; 72: 253–257.

    Article  CAS  PubMed  Google Scholar 

  300. Yates DH, Kharitonov SA, Robbins RA, Thomas PS, Barnes PJ . The effect of alcohol ingestion on exhaled nitric oxide. Eur Respir J. 1996; 9: 1130–1133.

    Article  CAS  PubMed  Google Scholar 

  301. Persson MG, Cederqvist B, Wiklund CU, Gustafsson LE . Ethanol causes decrements in airway excretion of endogenous nitric oxide in humans. Eur J Pharmacol 1994; 270: 273–278.

    CAS  PubMed  Google Scholar 

  302. Byrnes CA, Dinarevic S, Busst CA, Shinebourne EA, Bush A . Effect of measurement conditions on measured levels of peak exhaled nitric oxide. Thorax 1997; 52: 697–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Evjenth B, Hansen TE, Holt J . Exhaled nitric oxide decreases during exercise in non-asthmatic children. Clin Respir J 2012.

  304. Persson M, Wiklund N, Gustafsson L . Endogenous nitric-oxide in single exhalations and the change during exercise. Am Rev Respir Dis 1993; 148: 1210–1214.

    Article  CAS  PubMed  Google Scholar 

  305. Kharitonov SA, Yates D, Barnes PJ . Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 1995; 8: 295–297.

    Article  CAS  PubMed  Google Scholar 

  306. Malmberg LP, Petäys T, Haahtela T, Laatikainen T, Jousilahti P, Vartiainen E et al. Exhaled nitric oxide in healthy nonatopic school-age children: determinants and height-adjusted reference values. Pediatr Pulmonol 2006; 41: 635–642.

    Article  CAS  PubMed  Google Scholar 

  307. Gajdócsy R, Horváth I . Exhaled carbon monoxide in airway diseases: from research findings to clinical relevance. J Breath Res 2010; 4: 047102.

    Article  CAS  PubMed  Google Scholar 

  308. Zhang J, Yao X, Yu R, Bai J, Sun Y, Huang M et al. Exhaled carbon monoxide in asthmatics: a meta-analysis. Respir Res 2010; 11: 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Owens EO . Endogenous carbon monoxide production in disease. Clin Biochem 2010; 43: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  310. Babusikova E, Jesenak M, Durdik P, Dobrota D, Banovcin P . Exhaled carbon monoxide as a new marker of respiratory diseases in children. J Physiol Pharmacol 2008; 59: 9–17.

    PubMed  Google Scholar 

  311. Antus B, Horváth I . Exhaled nitric oxide and carbon monoxide in respiratory diseases. J Breath Res 2007; 1: 024002.

    Article  CAS  PubMed  Google Scholar 

  312. Johnson RA, Johnson FK . The effects of carbon monoxide as a neurotransmitter. Curr Opin Neurol 2000; 13: 709–713.

    Article  CAS  PubMed  Google Scholar 

  313. Lee PJ, Alam J, Sylvester SL, Inamdar N, Otterbein L, Choi AM . Regulation of heme oxygenase-1 expression in vivo and in vitro in hyperoxic lung injury. Am J Respir Cell Mol Biol 1996; 14: 556–568.

    Article  CAS  PubMed  Google Scholar 

  314. Abd El Khalek KA, El Seify MY, Youssef OI, Badr MM . Diagnostic value of exhaled carbon monoxide as an early marker of exacerbation in children with chronic lung diseases. ISRN Pediatr 2012; 2012: 859873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Dashdendev B, Fukushima LK, Woo MS, Ganbaatar E, Warburton D . Carbon monoxide pollution and lung function in urban compared with rural Mongolian children. Respirology 2011; 16: 653–658.

    Article  PubMed  Google Scholar 

  316. Yamaya M, Sekizawa K, Ishizuka S, Monma M, Sasaki H, Yamara M . Exhaled carbon monoxide levels during treatment of acute asthma. Eur Respir J 1999; 13: 757–760.

    Article  CAS  PubMed  Google Scholar 

  317. Jarvis MJ, Russell MA, Saloojee Y . Expired air carbon monoxide: a simple breath test of tobacco smoke intake. Br Med J 1980; 281: 484–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Nightingale JA, Maggs R, Cullinan P, Donnelly LE, Rogers DF, Kinnersley R et al. Airway inflammation after controlled exposure to diesel exhaust particulates. Am J Respir Crit Care Med 2000; 162: 161–166.

    Article  CAS  PubMed  Google Scholar 

  319. Cavaliere F, Volpe C, Gargaruti R, Poscia A, Di Donato M, Grieco G et al. Effects of acute hypoventilation and hyperventilation on exhaled carbon monoxide measurement in healthy volunteers. BMC Pulm Med 2009; 9: 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Dorevitch S, Demirtas H, Scheff PA, Persky VW . Bias and confounding in longitudinal measures of exhaled monoxides. J Expo Sci Environ Epidemiol 2007; 17: 583–590.

    Article  CAS  PubMed  Google Scholar 

  321. Andersson JA, Uddman R, Cardell LO . Increased carbon monoxide levels in the nasal airways of subjects with a history of seasonal allergic rhinitis and in patients with upper respiratory tract infection. Clin Exp Allergy 2002; 32: 224–227.

    Article  CAS  PubMed  Google Scholar 

  322. Montuschi P, Kharitonov SA, Barnes PJ . Exhaled carbon monoxide and nitric oxide in COPD. Chest 2001; 120: 496–501.

    Article  CAS  PubMed  Google Scholar 

  323. Yamaya M, Sekizawa K, Ishizuka S, Monma M, Mizuta K, Sasaki H . Increased carbon monoxide in exhaled air of subjects with upper respiratory tract infections. Am J Respir Crit Care Med 1998; 158: 311–314.

    Article  CAS  PubMed  Google Scholar 

  324. Togores B, Bosch M, Agustí AG . The measurement of exhaled carbon monoxide is influenced by airflow obstruction. Eur Respir J 2000; 15: 177–180.

    Article  CAS  PubMed  Google Scholar 

  325. Paredi P, Shah PL, Montuschi P, Sullivan P, Hodson ME, Kharitonov SA et al. Increased carbon monoxide in exhaled air of patients with cystic fibrosis. Thorax 1999; 54: 917–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Antuni JD, Kharitonov SA, Hughes D, Hodson ME, Barnes PJ . Increase in exhaled carbon monoxide during exacerbations of cystic fibrosis. Thorax 2000; 55: 138–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Zegdi R, Perrin D, Burdin M, Boiteau R, Tenaillon A . Increased endogenous carbon monoxide production in severe sepsis. Intensive Care Med 2002; 28: 793–796.

    Article  PubMed  Google Scholar 

  328. Paredi P, Biernacki W, Invernizzi G, Kharitonov SA, Barnes PJ . Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease? Chest 1999; 116: 1007–1011.

    Article  CAS  PubMed  Google Scholar 

  329. Zayasu K, Sekizawa K, Okinaga S, Yamaya M, Ohrui T, Sasaki H . Increased carbon monoxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med 1997; 156: 1140–1143.

    Article  CAS  PubMed  Google Scholar 

  330. Cheng S, Lyass A, Massaro JM, O'Connor GT, Keaney JF, Jr ., Vasan RS . Exhaled carbon monoxide and risk of metabolic syndrome and cardiovascular disease in the community. Circulation 2010; 122: 1470–1477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Zetterquist W, Marteus H, Johannesson M, Nordval SL, Ihre E, Lundberg JO et al. Exhaled carbon monoxide is not elevated in patients with asthma or cystic fibrosis. Eur Respir J 2002; 20: 92–99.

    Article  CAS  PubMed  Google Scholar 

  332. Vimercati L, Carrus A, Bisceglia L, Tatò I, Bellotta MR, Russo A et al. Biological monitoring and allergic sensitization in traffic police officers exposed to urban air pollution. Int J Immunopathol Pharmacol 2006; 19: 57–60.

    CAS  PubMed  Google Scholar 

  333. Hewat VN, Foster EV, O'Brien GD, Town GI . Ambient and exhaled carbon monoxide levels in a high traffic density area in Christchurch. N Z Med J 1998; 111: 343–344.

    CAS  PubMed  Google Scholar 

  334. Cope KA, Watson MT, Foster WM, Sehnert SS, Risby TH . Effects of ventilation on the collection of exhaled breath in humans. J Appl Physiol 2004; 96: 1371–1379.

    Article  PubMed  Google Scholar 

  335. Jones AY, Lam PK . End-expiratory carbon monoxide levels in healthy subjects living in a densely populated urban environment. Sci Total Environ 2006; 354: 150–156.

    Article  CAS  PubMed  Google Scholar 

  336. Sandberg A, Sköld CM, Grunewald J, Eklund A, Wheelock Å . Assessing recent smoking status by measuring exhaled carbon monoxide levels. PLoS One 2011; 6: e28864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Scheicher ME, Terra Filho J, Vianna EO . Sputum induction: review of literature and proposal for a protocol. Sao Paulo Med J 2003; 121: 213–219.

    Article  PubMed  Google Scholar 

  338. Davies AR, Hancox RJ . Induced sputum in asthma: diagnostic and therapeutic implications. Curr Opin Pulm Med. 2013; 19: 60–65.

    Article  PubMed  Google Scholar 

  339. Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol 2012; 129: S9–23.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Paggiaro PL, Chanez P, Holz O, Ind PW, Djukanović R, Maestrelli et al. Sputum induction. Eur Respir J Suppl 2002; 37: 3s–8s.

    CAS  PubMed  Google Scholar 

  341. Fahy JV . A safe, simple, standardized method should be used for sputum induction for research purposes. Clin Exp Allergy 1998; 28: 1047–1049.

    Article  CAS  PubMed  Google Scholar 

  342. Loh LC, Eg KP, Puspanathan P, Tang SP, Yip KS, Vijayasingham et al. A comparison of sputum induction methods: ultrasonic vs compressed-air nebulizer and hypertonic vs isotonic saline inhalation. Asian Pac J Allergy Immunol 2004; 22: 11–17.

    CAS  Google Scholar 

  343. Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med 2009; 180: 59–99.

    Article  PubMed  Google Scholar 

  344. Covar RA, Spahn JD, Martin RJ, Silkoff PE, Sundstrom DA, Murphy J et al. Safety and application of induced sputum analysis in childhood asthma. J Allergy Clin Immunol. 2004; 114: 575–582.

    Article  PubMed  Google Scholar 

  345. Gibson PG, Henry RL, Thomas P . Noninvasive assessment of airway inflammation in children: induced sputum, exhaled nitric oxide, and breath condensate. Eur Respir J 2000; 16: 1008–1015.

    CAS  PubMed  Google Scholar 

  346. Belda J, Leigh R, Parameswaran K, O'Byrne PM, Sears MR, Hargreave FE . Induced sputum cell counts in healthy adults. Am J Respir Crit Care Med 2000; 161: 475–478.

    Article  CAS  PubMed  Google Scholar 

  347. Spanevello A, Confalonieri M, Sulotto F, Romano F, Balzano G, Migliori GB et al. Induced sputum cellularity. Reference values and distribution in normal volunteers. Am J Respir Crit Care Med 2000; 162: 1172–1174.

    Article  CAS  PubMed  Google Scholar 

  348. Bacci E, Cianchetti S, Carnevali S, Bartoli ML, Dente FL, Di Franco A et al. Induced sputum is a reproducible method to assess airway inflammation in asthma. Mediators Inflamm. 2002; 11: 293–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Spanevello A, Migliori GB, Sharara A, Ballardini L, Bridge P, Pisati et al. Induced sputum to assess airway inflammation: a study of reproducibility. Clin Exp Allergy 1997; 27: 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  350. Kips JC, Peleman RA, Pauwels RA . Methods of examining induced sputum: do differences matter? Eur Respir J 1998; 11: 529–533.

    CAS  PubMed  Google Scholar 

  351. Popov TA, Pizzichini MM, Pizzichini E, Kolendowicz R, Punthakee Z, Dolovich J et al. Some technical factors influencing the induction of sputum for cell analysis. Eur Respir J 1995; 8: 559–565.

    CAS  PubMed  Google Scholar 

  352. van der Vaart H, Postma DS, Timens W, Kauffman HF, Hylkema MN, Ten Hacken NH . Repeated sputum inductions induce a transient neutrophilic and eosinophilic response. Chest 2006; 130: 1157–1164.

    Article  PubMed  Google Scholar 

  353. Lemiere C . Induced sputum and exhaled nitric oxide as noninvasive markers of airway inflammation from work exposures. Curr Opin Allergy Clin Immunol 2007; 7: 133–137.

    Article  PubMed  Google Scholar 

  354. Peleman RA, Rytilä PH, Kips JC, Joos GF, Pauwels RA . The cellular composition of induced sputum in chronic obstructive pulmonary disease. Eur Respir J 1999; 13: 839–843.

    Article  CAS  PubMed  Google Scholar 

  355. Dragonieri S, Musti M, Izzo C, Esposito LM, Foschino Barbaro MP, Resta O et al. Sputum induced cellularity in a group of traffic policemen. Sci Total Environ 2006; 367: 433–436.

    Article  CAS  PubMed  Google Scholar 

  356. Giovagnoli MR, Alderisio M, Cenci M, Nofroni I, Vecchione A . Carbon and hemosiderin-laden macrophages in sputum of traffic policeman exposed to air pollution. Arch Environ Health 1999; 54: 284–290.

    Article  CAS  PubMed  Google Scholar 

  357. Roy S, Ray MR, Basu C, Lahiri P, Lahiri T . Abundance of siderophages in sputum: indicator of an adverse lung reaction to air pollution. Acta Cytol 2001; 45: 958–964.

    Article  CAS  PubMed  Google Scholar 

  358. Lahiri T, Roy S, Basu C, Ganguly S, Ray MR, Lahiri P . Air pollution in Calcutta elicits adverse pulmonary reaction in children. Indian J Med Res 2000; 112: 21–26.

    CAS  PubMed  Google Scholar 

  359. Jacobs L, Emmerechts J, Hoylaerts MF, Mathieu C, Hoet PH, Nemery B et al. Traffic air pollution and oxidized LDL. PLoS One 2011; 6: e16200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Jacobs L, Emmerechts J, Mathieu C, Hoylaerts MF, Fierens F, Hoet PH et al. Air pollution related prothrombotic changes in persons with diabetes. Environ Health Perspect 2010; 118: 191–196.

    Article  CAS  PubMed  Google Scholar 

  361. McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 2007; 357: 2348–2358.

    Article  CAS  PubMed  Google Scholar 

  362. Vagaggini B, Taccola M, Cianchetti S, Carnevali S, Bartoli ML, Bacci E et al. Ozone exposure increases eosinophilic airway response induced by previous allergen challenge. Am J Respir Crit Care Med 2002; 166: 1073–1077.

    Article  PubMed  Google Scholar 

  363. Nordenhäll C, Pourazar J, Ledin MC, Levin JO, Sandström T, Adelroth E . Diesel exhaust enhances airway responsiveness in asthmatic subjects. Eur Respir J 2001; 17: 909–915.

    Article  PubMed  Google Scholar 

  364. Gong H, Linn WS, Terrell SL, Anderson KR, Clark KW . Anti-inflammatory and lung function effects of montelukast in asthmatic volunteers exposed to sulfur dioxide. Chest 2001; 119: 402–408.

    Article  CAS  PubMed  Google Scholar 

  365. Hiltermann JT, Lapperre TS, van Bree L, Steerenberg PA, Brahim JJ, Sont JK et al. Ozone-induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics: a new noninvasive tool in epidemiologic studies on air pollution and asthma. Free Radic Biol Med 1999; 27: 1448–1454.

    Article  CAS  PubMed  Google Scholar 

  366. Bosson J, Pourazar J, Forsberg B, Adelroth E, Sandström T, Blomberg A . Ozone enhances the airway inflammation initiated by diesel exhaust. Respir Med 2007; 101: 1140–1146.

    Article  PubMed  Google Scholar 

  367. Nordenhäll C, Pourazar J, Blomberg A, Levin JO, Sandström T, Adelroth E . Airway inflammation following exposure to diesel exhaust: a study of time kinetics using induced sputum. Eur Respir J 2000; 15: 1046–1051.

    Article  PubMed  Google Scholar 

  368. Fahy JV, Wong HH, Liu JT, Boushey HA . Analysis of induced sputum after air and ozone exposures in healthy subjects. Environ Res 1995; 70: 77–83.

    Article  CAS  PubMed  Google Scholar 

  369. Alexis NE, Lay JC, Almond M, Bromberg PA, Patel DD, Peden DB . Acute LPS inhalation in healthy volunteers induces dendritic cell maturation in vivo. J Allergy Clin Immunol 2005; 115: 345–350.

    Article  CAS  PubMed  Google Scholar 

  370. Thomas RA, Green RH, Brightling CE, Birring SS, Parker D, Wardlaw AJ et al. The influence of age on induced sputum differential cell counts in normal subjects. Chest 2004; 126: 1811–1814.

    Article  PubMed  Google Scholar 

  371. Todd DC, Armstrong S, D'Silva L, Allen CJ, Hargreave FE, Parameswaran K . Effect of obesity on airway inflammation: a cross-sectional analysis of body mass index and sputum cell counts. Clin Exp Allergy 2007; 37: 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  372. Popov TA, Shenkada MS, Tzoncheva AV, Pravtchanska MP, Mustakov TB, Dimitrov VD . Circadian changes in the sputum of asthmatic subjects and healthy controls. World Allergy Organ J 2008; 1: 74–78.

    Article  PubMed  PubMed Central  Google Scholar 

  373. Panzer SE, Dodge AM, Kelly EA, Jarjour NN . Circadian variation of sputum inflammatory cells in mild asthma. J Allergy Clin Immunol 2003; 111: 308–312.

    Article  PubMed  Google Scholar 

  374. Lensmar C, Elmberger G, Skold M, Eklund A . Smoking alters the phenotype of macrophages in induced sputum. Respir Med 1998; 92: 415–420.

    Article  CAS  PubMed  Google Scholar 

  375. Davidson WJ, Verity WS, Traves SL, Leigh R, Ford GT, Eves ND . Effect of incremental exercise on airway and systemic inflammation in patients with COPD. J Appl Physiol 2012; 112: 2049–2056.

    Article  CAS  PubMed  Google Scholar 

  376. Hentschel J, Muller U, Doht F, Fischer N, Boer K, Sonnemann J et al. Influences of nasal lavage collection-, processing- and storage methods on inflammatory markers—evaluation of a method for non-invasive sampling of epithelial lining fluid in cystic fibrosis and other respiratory diseases. J Immunol Methods 2014; 404: 41–51.

    Article  CAS  PubMed  Google Scholar 

  377. Alexis NE . Biomarker sampling of the airways in asthma. Curr Opin Pulm Med 2014; 20: 46–52.

    Article  CAS  PubMed  Google Scholar 

  378. Howarth PH, Persson CG, Meltzer EO, Jacobson MR, Durham SR, Silkoff PE . Objective monitoring of nasal airway inflammation in rhinitis. J Allergy Clin Immunol 2005; 115: S414–S441.

    Article  PubMed  Google Scholar 

  379. Chawes BLK, Edwards MJ, Shamji B, Walker C, Nicholson GC, Tan AJ et al. A novel method for assessing unchallenged levels of mediators in nasal epithelial lining fluid. J Allergy Clin Immunol 2010; 125: 1387–9.e3.

    Article  CAS  PubMed  Google Scholar 

  380. Nikasinovic-Fournier L, Just J, Seta N, Callais F, Sahraoui F, Grimfeld A et al. Nasal lavage as a tool for the assessment of upper-airway inflammation in adults and children. J Lab Clin Med 2002; 139: 173–180.

    Article  CAS  PubMed  Google Scholar 

  381. Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE et al. Nasal lavage VEGF and TNF-alpha levels during a natural cold predict asthma exacerbations. Clin Exp Allergy 2014; 44: 1484–1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Noah TL, Henderson FW, Henry MM, Peden DB, Devlin RB . Nasal lavage cytokines in normal, allergic, and asthmatic school-age children. Am J Respir Crit Care Med 1995; 152: 1290–1296.

    Article  CAS  PubMed  Google Scholar 

  383. Svensson C, Andersson M, Persson CG, Venge P, Alkner U, Pipkorn U . Albumin, bradykinins, and eosinophil cationic protein on the nasal mucosal surface in patients with hay fever during natural allergen exposure. J Allergy Clin Immunol 1990; 85: 828–833.

    Article  CAS  PubMed  Google Scholar 

  384. Chen BY, Chan CC, Lee CT, Cheng TJ, Huang WC, Jhou JC et al. The association of ambient air pollution with airway inflammation in schoolchildren. Am J Epidemiol 2012; 175: 764–774.

    Article  PubMed  Google Scholar 

  385. Kopp MV, Ulmer C, Ihorst G, Seydewitz HH, Frischer T, Forster J et al. Upper airway inflammation in children exposed to ambient ozone and potential signs of adaptation. Eur Respir J 1999; 14: 854–861.

    Article  CAS  PubMed  Google Scholar 

  386. Frischer T, Pullwitt A, Kuhr J, Meinert R, Haschke N, Studnicka M et al. Aromatic hydroxylation in nasal lavage fluid following ambient ozone exposure. Free Radic Biol Med 1997; 22: 201–207.

    Article  CAS  PubMed  Google Scholar 

  387. Calderón-Garcidueñas L, Villarreal-Calderon R, Valencia-Salazar G, Henríquez-Roldán C, Gutiérrez-Castrellón P, Torres-Jardón R et al. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants. Inhal Toxicol 2008; 20: 499–506.

    Article  CAS  PubMed  Google Scholar 

  388. Koren HS, Hatch GE, Graham DE . Nasal lavage as a tool in assessing acute inflammation in response to inhaled pollutants. Toxicology 1990; 60: 15–25.

    Article  CAS  PubMed  Google Scholar 

  389. Hiltermann TJ, de Bruijne CR, Stolk J, Zwinderman AH, Spieksma FT, Roemer W et al. Effects of photochemical air pollution and allergen exposure on upper respiratory tract inflammation in asthmatics. Am J Respir Crit Care Med 1997; 156: 1765–1772.

    Article  CAS  PubMed  Google Scholar 

  390. Gomes EC, Stone V, Florida-James G . Impact of heat and pollution on oxidative stress and CC16 secretion after 8 km run. Eur J Appl Physiol 2011; 111: 2089–2097.

    Article  CAS  PubMed  Google Scholar 

  391. Larsson BM, Grunewald J, Skold CM, Lundin A, Sandstrom T, Eklund A et al. Limited airway effects in mild asthmatics after exposure to air pollution in a road tunnel. Respir Med 2010; 104: 1912–1918.

    Article  PubMed  Google Scholar 

  392. Diaz-Sanchez D, Dotson AR, Takenaka H, Saxon A . Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Cini Invest 1994; 94: 1417–1425.

    Article  CAS  Google Scholar 

  393. Steenhof M, Mudway IS, Gosens I, Hoek G, Godri KJ, Kelly FJ et al. Acute nasal pro-inflammatory response to air pollution depends on characteristics other than particle mass concentration or oxidative potential: the RAPTES project. Occup Environ Med 2013; 70: 341–348.

    Article  CAS  PubMed  Google Scholar 

  394. Wang JH, Devalia JL, Duddle JM, Hamilton SA, Davies RJ . Effect of six-hour exposure to nitrogen dioxide on early-phase nasal response to allergen challenge in patients with a history of seasonal allergic rhinitis. J Allergy Clin Immunol 1995; 96: 669–676.

    Article  CAS  PubMed  Google Scholar 

  395. Polat D, Eberwein G, Becker A, Weishaupt C, Schins RP, Ranft U et al. Ambient exposure and nasal inflammation in adults and children—a preliminary analysis. Int J Hyg Environ Health 2002; 205: 229–234.

    Article  PubMed  Google Scholar 

  396. Laumbach RJ, Fiedler N, Gardner CR, Laskin DL, Fan ZH, Zhang J et al. Nasal effects of a mixture of volatile organic compounds and their ozone oxidation products. J Occup Environ Med 2005; 47: 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  397. Heath SK, Koenig JQ, Morgan MS, Checkoway H, Hanley QS, Rebolledo V . Effects of sulfur dioxide exposure on African-American and Caucasian asthmatics. Environ Res 1994; 66: 1–11.

    Article  CAS  PubMed  Google Scholar 

  398. Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, Reyes-Ruiz NI, Del Rio-Navarro BE, Ruiz-Navarro MX et al. Antioxidant supplementation and nasal inflammatory responses among young asthmatics exposed to high levels of ozone. Clin Exp Immunol2004; 138: 317–322.

    CAS  Google Scholar 

  399. Noah TL, Zhou H, Zhang H, Horvath K, Robinette C, Kesic M et al. Diesel exhaust exposure and nasal response to attenuated influenza in normal and allergic volunteers. Am J Respir Crit Care Med 2012; 185: 179–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Togias AG, Naclerio RM, Proud D, Fish JE, Adkinson NF, Jr ., Kagey-Sobotka A et al. Nasal challenge with cold, dry air results in release of inflammatory mediators. Possible mast cell involvement. J Clin Invest 1985; 76: 1375–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Cruz AA, Naclerio RM, Proud D, Togias A . Epithelial shedding is associated with nasal reactions to cold, dry air. J Allergy Clin Immunol 2006; 117: 1351–1358.

    Article  PubMed  Google Scholar 

  402. Assanasen P, Baroody FM, Naureckas E, Naclerio RM . Hot, humid air increases cellular influx during the late-phase response to nasal challenge with antigen. Clin Exp Allergy 2001; 31: 1913–1922.

    Article  CAS  PubMed  Google Scholar 

  403. Sardella A, Voisin C, Dumont X, Marcucci F, Bernard A . Nasal epithelium biomarkers in young children: associations with allergic sensitization and environmental stressors. Pediatr Pulmonol 2013; 48: 571–578.

    Article  PubMed  Google Scholar 

  404. Barrenas F, Andersson B, Cardell LO, Langston M, Mobini R, Perkins A et al. Gender differences in inflammatory proteins and pathways in seasonal allergic rhinitis. Cytokine 2008; 42: 325–329.

    Article  CAS  PubMed  Google Scholar 

  405. Nicola ML, Carvalho HB, Yoshida CT, Anjos FM, Nakao M, Santos Ude et al. Young "healthy" smokers have functional and inflammatory changes in the nasal and the lower airways. Chest 2014; 145: 998–1005.

    Article  PubMed  Google Scholar 

  406. Heber D, Li Z, Garcia-Lloret M, Wong AM, Lee TY, Thames G et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct 2014; 5: 35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Noah TL, Zhang H, Zhou H, Glista-Baker E, Muller L, Bauer RN et al. Effect of broccoli sprouts on nasal response to live attenuated influenza virus in smokers: a randomized, double-blind study. PLoS One 2014; 9: e98671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Kendzia B, Pesch B, Marczynski B, Lotz A, Welge P, Rihs HP et al. Pre- and postshift levels of inflammatory biomarkers and DNA damage in non-bitumen-exposed construction workers-subpopulation of the German Human Bitumen Study. J Toxicol Environ Health A 2012; 75: 533–543.

    Article  CAS  PubMed  Google Scholar 

  409. Decramer S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B, Bascands JL et al. Urine in clinical proteomics. Mol Cell Proteomics 2008; 7: 1850–1862.

    Article  CAS  PubMed  Google Scholar 

  410. Thongboonkerd V . Practical points in urinary proteomics. J Proteome Res 2007; 6: 3881–3890.

    Article  CAS  PubMed  Google Scholar 

  411. Good DM, Thongboonkerd V, Novak J, Bascands JL, Schanstra JP, Coon JJ et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J Proteome Res 2007; 6: 4549–4555.

    Article  CAS  PubMed  Google Scholar 

  412. Il'yasova D, Scarbrough P, Spasojevic I . Urinary biomarkers of oxidative status. Clin Chim Acta 2012; 413: 1446–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Court M, Selevsek N, Matondo M, Allory Y, Garin J, Masselon CD et al. Toward a standardized urine proteome analysis methodology. Proteomics 2011; 11: 1160–1171.

    Article  CAS  PubMed  Google Scholar 

  414. Afkarian M, Bhasin M, Dillon ST, Guerrero MC, Nelson RG, Knowler WC et al. Optimizing a proteomics platform for urine biomarker discovery. Mol Cell Proteomics 2010; 9: 2195–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Roberts LJ, Morrow JD . Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000; 28: 505–513.

    Article  CAS  PubMed  Google Scholar 

  416. Morrow JD . The isoprostanes: their quantification as an index of oxidant stress status in vivo. Drug Metab Rev 2000; 32: 377–385.

    Article  CAS  PubMed  Google Scholar 

  417. Richelle M, Turini ME, Guidoux R, Tavazzi I, Metairon S, Fay LB . Urinary isoprostane excretion is not confounded by the lipid content of the diet. FEBS Lett 1999; 459: 259–262.

    Article  CAS  PubMed  Google Scholar 

  418. Brown ED, Morris VC, Rhodes DG, Sinha R, Levander OA . Urinary malondialdehyde-equivalents during ingestion of meat cooked at high or low temperatures. Lipids 1995; 30: 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  419. Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE et al. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 2005; 38: 698–710.

    Article  CAS  PubMed  Google Scholar 

  420. Bottini PV, Ribeiro Alves MA, Garlipp CR . Electrophoretic pattern of concentrated urine: comparison between 24-hour collection and random samples. Am J Kidney Dis 2002; 39: E2.

    Article  PubMed  Google Scholar 

  421. Matsumoto Y, Ogawa Y, Yoshida R, Shimamori A, Kasai H, Ohta H . The stability of the oxidative stress marker, urinary 8-hydroxy-2'- deoxyguanosine (8-OHdG), when stored at room temperature. J Occup Health 2008; 50: 366–372.

    Article  CAS  PubMed  Google Scholar 

  422. Pilger A, Rüdiger HW . 8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 2006; 80: 1–15.

    Article  CAS  PubMed  Google Scholar 

  423. Basu S . F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 2008; 10: 1405–1434.

    Article  CAS  PubMed  Google Scholar 

  424. Valavanidis A, Vlachogianni T, Fiotakis C . 8-hydroxy-2' -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009; 27: 120–139.

    Article  CAS  PubMed  Google Scholar 

  425. Cooke MS, Evans MD, Herbert KE, Lunec J . Urinary 8-oxo-2'-deoxyguanosine—source, significance and supplements. Free Radic Res 2000; 32: 381–397.

    Article  CAS  PubMed  Google Scholar 

  426. Wang TC, Song YS, Wang H, Zhang J, Yu SF, Gu YE et al. Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater 2012; 213-214: 440–446.

    Article  CAS  PubMed  Google Scholar 

  427. Huang HB, Lai CH, Chen GW, Lin YY, Jaakkola JJ, Liou SH et al. Traffic-related air pollution and DNA damage: a longitudinal study in Taiwanese traffic conductors. PLoS One 2012; 7: e37412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Autrup H, Daneshvar B, Dragsted LO, Gamborg M, Hansen M, Loft S et al. Biomarkers for exposure to ambient air pollution—comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress. Environ Health Perspect 1999; 107: 233–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  429. Loft S, Poulsen HE, Vistisen K, Knudsen LE . Increased urinary excretion of 8-oxo-2'-deoxyguanosine, a biomarker of oxidative DNA damage, in urban bus drivers. Mutat Res 1999; 441: 11–19.

    Article  CAS  PubMed  Google Scholar 

  430. Bagryantseva Y, Novotna B, Rossner P, Chvatalova I, Milcova A, Svecova V et al. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms. Toxicol Lett. 2010; 199: 60–68.

    Article  CAS  PubMed  Google Scholar 

  431. Han YY, Donovan M, Sung FC . Increased urinary 8-hydroxy-2'-deoxyguanosine excretion in long-distance bus drivers in Taiwan. Chemosphere 2010; 79: 942–948.

    Article  CAS  PubMed  Google Scholar 

  432. Rossner P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Sram RJ . Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA. Mutat Res 2008; 642: 14–20.

    Article  CAS  PubMed  Google Scholar 

  433. Rossner P, Svecova V, Milcova A, Lnenickova Z, Solansky I, Santella RM et al. Oxidative and nitrosative stress markers in bus drivers. Mutat Res 2007; 617: 23–32.

    Article  CAS  PubMed  Google Scholar 

  434. Wei Y, Han IK, Shao M, Hu M, Zhang OJ, Tang X . PM2.5 constituents and oxidative DNA damage in humans. Environ Sci Technol 2009; 43: 4757–4762.

    Article  CAS  PubMed  Google Scholar 

  435. Wei Y, Han IK, Hu M, Shao M, Zhang JJ, Tang X . Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. Chemosphere 2010; 81: 1280–1285.

    Article  CAS  PubMed  Google Scholar 

  436. Nuernberg AM, Boyce PD, Cavallari JM, Fang SC, Eisen EA, Christiani DC . Urinary 8-isoprostane and 8-OHdG concentrations in boilermakers with welding exposure. J Occup Environ Med 2008; 50: 182–189.

    Article  CAS  PubMed  Google Scholar 

  437. Kim JY, Mukherjee S, Ngo LC, Christiani DC . Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environ Health Perspect 2004; 112: 666–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Fan R, Wang D, Mao C, Ou S, Lian Z, Huang S et al. Preliminary study of children's exposure to PAHs and its association with 8-hydroxy-2'-deoxyguanosine in Guangzhou, China. Environ Int 2012; 42: 53–58.

    Article  CAS  PubMed  Google Scholar 

  439. Buthbumrung N, Mahidol C, Navasumrit P, Promvijit J, Hunsonti P, Autrup H et al. Oxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzene. Chem Biol Interact 2008; 172: 185–194.

    Article  CAS  PubMed  Google Scholar 

  440. Sørensen M, Autrup H, Hertel O, Wallin H, Knudsen LE, Loft S . Personal exposure to PM2.5 and biomarkers of DNA damage. Cancer Epidemiol Biomarkers Prev 2003; 12: 191–196.

    PubMed  Google Scholar 

  441. Allen J, Trenga CA, Peretz A, Sullivan JH, Carlsten CC, Kaufman JD . Effect of diesel exhaust inhalation on antioxidant and oxidative stress responses in adults with metabolic syndrome. Inhal Toxicol 2009; 21: 1061–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  442. Rossner P, Rossnerova A, Spatova M, Beskid O, Uhlirova K, Libalova H et al. Analysis of biomarkers in a Czech population exposed to heavy air pollution. Part II: chromosomal aberrations and oxidative stress. Mutagenesis 2013; 28: 97–106.

    Article  CAS  PubMed  Google Scholar 

  443. Ren C, Vokonas PS, Suh H, Fang S, Christiani DC, Schwartz J . Effect modification of air pollution on Urinary 8-Hydroxy-2'-Deoxyguanosine by genotypes: an application of the multiple testing procedure to identify significant SNP interactions. Environ Health 2010; 9: 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  444. Ren C, Fang S, Wright RO, Suh H, Schwartz J . Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage induced by ambient pollution in the Normative Aging Study. Occup Environ Med 2011; 68: 562–569.

    Article  CAS  PubMed  Google Scholar 

  445. Suzuki J, Inoue Y, Suzuki S . Changes in the urinary excretion level of 8-hydroxyguanine by exposure to reactive oxygen-generating substances. Free Radic Biol Med 1995; 18: 431–436.

    Article  CAS  PubMed  Google Scholar 

  446. Andreoli R, Protano C, Manini P, De Palma G, Goldoni M, Petyx M et al. Association between environmental exposure to benzene and oxidative damage to nucleic acids in children. Med Lav 2012; 103: 324–337.

    PubMed  Google Scholar 

  447. Kim JH, Choi YH, Bae S, Park HY, Hong YC . eNOS gene polymorphisms modify the association of PM(10) with oxidative stress. Toxicol Lett 2012; 214: 263–267.

    Article  CAS  PubMed  Google Scholar 

  448. Bae S, Pan XC, Kim SY, Park K, Kim YH, Kim H et al. Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in schoolchildren. Environ Health Perspect 2010; 118: 579–583.

    Article  CAS  PubMed  Google Scholar 

  449. Yoon HS, Lee KM, Lee KH, Kim S, Choi K, Kang D . Polycyclic aromatic hydrocarbon (1-OHPG and 2-naphthol) and oxidative stress (malondialdehyde) biomarkers in urine among Korean adults and children. Int J Hyg Environ Health 2012; 215: 458–464.

    Article  CAS  PubMed  Google Scholar 

  450. Jacquemin B, Lanki T, Yli-Tuomi T, Vallius M, Hoek G, Heinrich J et al. Source category-specific PM2.5 and urinary levels of Clara cell protein CC16. The ULTRA study. Inhal Toxicol 2009; 21: 1068–1076.

    Article  CAS  PubMed  Google Scholar 

  451. Timonen KL, Hoek G, Heinrich J, Bernard A, Brunekreef B, de Hartog J et al. Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. Occup Environ Med 2004; 61: 908–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Bräuner EV, Mortensen J, Møller P, Bernard A, Vinzents P, Wåhlin et al. Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function. Inhal Toxicol 2009; 21: 38–47.

    Article  CAS  PubMed  Google Scholar 

  453. Bernatsky S, Fournier M, Pineau CA, Clarke AE, Vinet E, Smargiassi A . Associations between ambient fine particulate levels and disease activity in patients with systemic lupus erythematosus (SLE). Environ Health Perspect 2011; 119: 45–49.

    Article  CAS  PubMed  Google Scholar 

  454. Verplanke AJ, Leummens MH, Herber RF . Occupational exposure to tetrachloroethene and its effects on the kidneys. J Occup Environ Med 1999; 41: 11–16.

    Article  CAS  PubMed  Google Scholar 

  455. Rehwagen M, Krumbiegel P, Koschny I, Rolle-Kampczyk U, Richter M . Herbarth. The [15 N]methacetin liver function test characterizes multicomponent exposure of children in industrially polluted regions. Isotopes Environ Health Stud 2001; 37: 167–174.

    Article  CAS  PubMed  Google Scholar 

  456. Hansen AM, Wallin H, Binderup ML, Dybdahl M, Autrup H, Loft S et al. Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutat Res 2004; 557: 7–17.

    Article  CAS  PubMed  Google Scholar 

  457. Pilger A, Germadnik D, Riedel K, Meger-Kossien I, Scherer G, Rudiger HW . Longitudinal study of urinary 8-hydroxy-2'-deoxyguanosine excretion in healthy adults. Free Radic Res 2001; 35: 273–280.

    Article  CAS  PubMed  Google Scholar 

  458. Loft S, Vistisen K, Ewertz M, Tjonneland A, Overvad K, Poulsen HE . Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis 1992; 13: 2241–2247.

    Article  CAS  PubMed  Google Scholar 

  459. Sakano N, Takahashi N, Wang DH, Sauriasari R, Takemoto K, Kanbara S et al. Plasma 3-nitrotyrosine, urinary 8-isoprostane and 8-OHdG among healthy Japanese people. Free Radic Res 2009; 43: 183–192.

    Article  CAS  PubMed  Google Scholar 

  460. Tufvesson E, Svensson H, Ankerst J, Bjermer L . Increase of club cell (Clara) protein (CC16) in plasma and urine after exercise challenge in asthmatics and healthy controls, and correlations to exhaled breath temperature and exhaled nitric oxide. Respir Med 2013; 107: 1675–1681.

    Article  PubMed  Google Scholar 

  461. Horváth I, Hunt J, Barnes PJ, Alving K, Antczak A, Baraldi E et al. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 2005; 26: 523–548.

    Article  CAS  PubMed  Google Scholar 

  462. Davis MD, Montpetit A, Hunt J . Exhaled breath condensate: an overview. Immunol Allergy Clin North Am 2012; 32: 363–375.

    Article  PubMed  PubMed Central  Google Scholar 

  463. Hom S, Walsh B, Hunt J . Matrix effect in exhaled breath condensate interferon-gamma immunoassay. J Breath Res 2008; 2: 041001.

    Article  CAS  PubMed  Google Scholar 

  464. Effros RM, Hoagland KW, Bosbous M, Castillo D, Foss B, Dunning M et al. Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 2002; 165: 663–669.

    Article  PubMed  Google Scholar 

  465. Chérot-Kornobis N, Hulo S, de Broucker V, Hassoun S, Lepage N, Edmé JL et al. Induced Sputum, Exhaled NO, and Breath Condensate in Occupational Medicine. J Occup Environ Med 2012; 54: 922–927.

    Article  CAS  PubMed  Google Scholar 

  466. Grob NM, Aytekin M, Dweik RA . Biomarkers in exhaled breath condensate: a review of collection, processing and analysis. J Breath Res 2008; 2: 037004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  467. Rosias P . Methodological aspects of exhaled breath condensate collection and analysis. J Breath Res 2012; 6: 027102.

    Article  CAS  PubMed  Google Scholar 

  468. Czebe K, Barta I, Antus B, Valyon M, Horváth I, Kullmann T . Influence of condensing equipment and temperature on exhaled breath condensate pH, total protein and leukotriene concentrations. Respir Med 2008; 102: 720–725.

    Article  PubMed  Google Scholar 

  469. Vyas A, Zhang Q, Gunaratne S, Lee W, Lin JL, Lin JS et al. The effect of temperature on exhaled breath condensate collection. J Breath Res 2012; 6: 036002.

    Article  PubMed  Google Scholar 

  470. Ahmadzai H, Huang S, Hettiarachchi R, Lin JL, Thomas PS, Zhang Q . Exhaled breath condensate: a comprehensive update. Clin Chem Lab Med 2013; 51: 1343–1361.

    Article  CAS  PubMed  Google Scholar 

  471. Hunt J . Condensing exhaled breath into science. Chest 2011; 139: 5–6.

    Article  PubMed  Google Scholar 

  472. van Beurden WJ, Harff GA, Dekhuijzen PN, van den Bosch MJ, Creemers JP, Smeenk FW . An efficient and reproducible method for measuring hydrogen peroxide in exhaled breath condensate. Respir Med 2002; 96: 197–203.

    Article  CAS  PubMed  Google Scholar 

  473. Vaughan J, Ngamtrakulpanit L, Pajewski TN, Turner R, Nguyen TA, Smith A et al. Exhaled breath condensate pH is a robust and reproducible assay of airway acidity. Eur Respir J 2003; 22: 889–894.

    Article  CAS  PubMed  Google Scholar 

  474. Effros RM, Biller J, Foss B, Hoagland K, Dunning MB, Castillo D et al. A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am J Respir Crit Care Med 2003; 168: 1500–1505.

    Article  PubMed  Google Scholar 

  475. Kullmann T, Barta I, Antus B, Valyon M, Horvath I . Environmental temperature and relative humidity influence exhaled breath condensate pH. Eur Respir J 2008; 31: 474–475.

    Article  CAS  PubMed  Google Scholar 

  476. Horváth I, Donnelly LE, Kiss A, Kharitonov SA, Lim S, Chung KF et al. Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am J Respir Crit Care Med 1998; 158: 1042–1046.

    Article  PubMed  Google Scholar 

  477. Emelyanov A, Fedoseev G, Abulimity A, Rudinski K, Fedoulov A, Karabanov A et al. Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 2001; 120: 1136–1139.

    Article  CAS  PubMed  Google Scholar 

  478. Celik M, Tuncer A, Soyer OU, Saçkesen C, Tanju Besler H, Kalayci O . Oxidative stress in the airways of children with asthma and allergic rhinitis. Pediatr Allergy Immunol 2012; 23: 556–561.

    Article  PubMed  Google Scholar 

  479. Ueno T, Kataoka M, Hirano A, Iio K, Tanimoto Y, Kanehiro A et al. Inflammatory markers in exhaled breath condensate from patients with asthma. Respirology 2008; 13: 654–663.

    Article  PubMed  Google Scholar 

  480. Psathakis K, Mermigkis D, Papatheodorou G, Loukides S, Panagou P, Polychronopoulos V et al. Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur J Clin Invest 2006; 36: 362–367.

    Article  CAS  PubMed  Google Scholar 

  481. Dalaveris E, Kerenidi T, Katsabeki-Katsafli A, Kiropoulos T, Tanou K, Gourgoulianis KI et al. VEGF, TNF-alpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer. Lung Cancer 2009; 64: 219–225.

    Article  PubMed  Google Scholar 

  482. MacNee W, Rennard SI, Hunt JF, Edwards LD, Miller BE, Locantore NW et al. Evaluation of exhaled breath condensate pH as a biomarker for COPD. Respir Med 2011; 105: 1037–1045.

    Article  PubMed  Google Scholar 

  483. Kuban P, Foret F . Exhaled breath condensate: determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805: 1–18.

    Article  CAS  PubMed  Google Scholar 

  484. Corradi M, Alinovi R, Goldoni M, Vettori M, Folesani G, Mozzoni et al. Biomarkers of oxidative stress after controlled human exposure to ozone. Toxicol Lett 2002; 134: 219–225.

    Article  CAS  PubMed  Google Scholar 

  485. Alfaro MF, Walby WF, Adams WC, Schelegle ES . Breath condensate levels of 8-isoprostane and leukotriene B4 after ozone inhalation are greater in sensitive versus nonsensitive subjects. Exp Lung Res 2007; 33: 115–133.

    Article  CAS  PubMed  Google Scholar 

  486. Sawyer K, Samet JM, Ghio AJ, Pleil JD, Madden MC . Responses measured in the exhaled breath of human volunteers acutely exposed to ozone and diesel exhaust. J Breath Res 2008; 2: 037019.

    Article  CAS  PubMed  Google Scholar 

  487. Rundell KW, Slee JB, Caviston R, Hollenbach AM . Decreased lung function after inhalation of ultrafine and fine particulate matter during exercise is related to decreased total nitrate in exhaled breath condensate. Inhal Toxicol 2008; 20: 1–9.

    Article  CAS  PubMed  Google Scholar 

  488. Gong J, Zhu T, Kipen H, Wang G, Hu M, Ohman-Strickland et al. Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress. J Expo Sci Environ Epidemiol 2013; 23: 322–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Manney S, Meddings CM, Harrison RM, Mansur AH, Karakatsani A, Analitis A et al. Association between exhaled breath condensate nitrate+nitrite levels with ambient coarse particle exposure in subjects with airways disease. Occup Environ Med 2012; 69: 663–669.

    Article  CAS  PubMed  Google Scholar 

  490. Vagaggini B, Bartoli ML, Cianchetti S, Costa F, Bacci E, Dente FL et al. Increase in markers of airway inflammation after ozone exposure can be observed also in stable treated asthmatics with minimal functional response to ozone. Respir Res 2010; 11: 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  491. Romieu I, Barraza-Villarreal A, Escamilla-Nuñez C, Almstrand AC, Diaz-Sanchez D, Sly PD et al. Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol 2008; 121: 903–9.e6.

    Article  CAS  PubMed  Google Scholar 

  492. Patel MM, Chillrud SN, Deepti KC, Ross JM, Kinney PL . Traffic-related air pollutants and exhaled markers of airway inflammation and oxidative stress in New York City adolescents. Environ Res 2013; 121: 71–78.

    Article  CAS  PubMed  Google Scholar 

  493. Mills NL, Robinson SD, Fokkens PH, Leseman DL, Miller MR, Anderson D et al. Exposure to concentrated ambient particles does not affect vascular function in patients with coronary heart disease. Environ Health Perspect 2008; 116: 709–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  494. Greenwald R, Ferdinands JM, Teague WG . Ionic determinants of exhaled breath condensate pH before and after exercise in adolescent athletes. Pediatr Pulmonol 2009; 44: 768–777.

    Article  PubMed  Google Scholar 

  495. Marek E, Volke J, Muckenhoff K, Platen P, Marek W . Exercise in cold air and hydrogen peroxide release in exhaled breath condensate. Adv Exp Med Biol 2013; 756: 169–177.

    Article  CAS  PubMed  Google Scholar 

  496. Bloemen K, Lissens G, Desager K, Schoeters G . Determinants of variability of protein content, volume and pH of exhaled breath condensate. Respir Med 2007; 101: 1331–1337.

    Article  CAS  PubMed  Google Scholar 

  497. Nowak D, Kalucka S, Białasiewicz P, Król M . Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. Free Radic Biol Med 2001; 30: 178–186.

    Article  CAS  PubMed  Google Scholar 

  498. Jobsis Q, Raatgeep HC, Schellekens SL, Hop WC, Hermans PW, de Jongste JC . Hydrogen peroxide in exhaled air of healthy children: reference values. Eur Respir J 1998; 12: 483–485.

    Article  CAS  PubMed  Google Scholar 

  499. Brooks SM, Haight RR, Gordon RL . Age does not affect airway pH and ammonia as determined by exhaled breath measurements. Lung 2006; 184: 195–200.

    Article  CAS  PubMed  Google Scholar 

  500. Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 2000; 162: 1175–1177.

    Article  CAS  PubMed  Google Scholar 

  501. Inonu H, Doruk S, Sahin S, Erkorkmaz U, Celik D, Celikel S et al. Oxidative stress levels in exhaled breath condensate associated with COPD and smoking. Respir Care 2012; 57: 413–419.

    Article  PubMed  Google Scholar 

  502. Taito S, Sekikawa K, Domen S, Konishi K, Kimura T, Takahashi M et al. Pulmonary oxidative stress is induced by maximal exercise in young cigarette smokers. Nicotine Tob Res 2012; 14: 243–247.

    Article  CAS  PubMed  Google Scholar 

  503. Riediker M, Danuser B . Exhaled breath condensate pH is increased after moderate exercise. J Aerosol Med 2007; 20: 13–18.

    Article  PubMed  Google Scholar 

  504. Kullmann T, Barta I, Antus B, Horváth I . Drinking influences exhaled breath condensate acidity. Lung 2008; 186: 263–268.

    Article  CAS  PubMed  Google Scholar 

  505. Kashyap B, Reddy PS . Micronuclei assay of exfoliated oral buccal cells: means to assess the nuclear abnormalities in different diseases. J Cancer Res Ther 2012; 8: 184–191.

    Article  PubMed  Google Scholar 

  506. Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: the HUMN project perspective on current status and knowledge gaps. Mutat Res 2008; 659: 93–108.

    Article  CAS  PubMed  Google Scholar 

  507. Celik A, Cavaş T, Ergene-Gözükara S . Cytogenetic biomonitoring in petrol station attendants: micronucleus test in exfoliated buccal cells. Mutagenesis 2003; 18: 417–421.

    Article  CAS  PubMed  Google Scholar 

  508. Bonassi S, Coskun E, Ceppi M, Lando C, Bolognesi C, Burgaz S et al. The HUman MicroNucleus project on eXfoLiated buccal cells (HUMN(XL)): the role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutat Res 2011; 728: 88–97.

    Article  CAS  PubMed  Google Scholar 

  509. Ceppi M, Biasotti B, Fenech M, Bonassi S . Human population studies with the exfoliated buccal micronucleus assay: statistical and epidemiological issues. Mutat Res 2010; 705: 11–19.

    Article  CAS  PubMed  Google Scholar 

  510. Fenech M, Holland N, Zeiger E, Chang WP, Burgaz S, Thomas et al. The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future. Mutagenesis 2011; 26: 239–245.

    Article  CAS  PubMed  Google Scholar 

  511. Celik A, Yildirim S, Ekinci SY, Taşdelen B . Bio-monitoring for the genotoxic assessment in road construction workers as determined by the buccal micronucleus cytome assay. Ecotoxicol Environ Saf 2013; 92: 265–270.

    Article  CAS  PubMed  Google Scholar 

  512. Khan MI, Ahmad I, Mahdi AA, Akhtar MJ, Islam N, Ashquin M et al. Elevated blood lead levels and cytogenetic markers in buccal epithelial cells of painters in India: genotoxicity in painters exposed to lead containing paints. Environ Sci Pollut Res Int 2010; 17: 1347–1354.

    Article  CAS  PubMed  Google Scholar 

  513. Pinto D, Ceballos JM, García G, Guzmán P, Del Razo LM, Vera E et al. Increased cytogenetic damage in outdoor painters. Mutat Res 2000; 467: 105–111.

    Article  CAS  PubMed  Google Scholar 

  514. González-Yebra AL, Kornhauser C, Barbosa-Sabanero G, Pérez-Luque EL, Wrobel K . Exposure to organic solvents and cytogenetic damage in exfoliated cells of the buccal mucosa from shoe workers. Int Arch Occup Environ Health 2009; 82: 373–380.

    Article  CAS  PubMed  Google Scholar 

  515. Sailaja N, Chandrasekhar M, Rekhadevi PV, Mahboob M, Rahman MF, Vuyyuri SB et al. Genotoxic evaluation of workers employed in pesticide production. Mutat Res 2006; 609: 74–80.

    Article  CAS  PubMed  Google Scholar 

  516. Karahalil B, Karakaya AE, Burgaz S . The micronucleus assay in exfoliated buccal cells: application to occupational exposure to polycyclic aromatic hydrocarbons. Mutat Res 1999; 442: 29–35.

    Article  CAS  PubMed  Google Scholar 

  517. Pastor S, Creus A, Xamena N, Siffel C, Marcos R . Occupational exposure to pesticides and cytogenetic damage: results of a Hungarian population study using the micronucleus assay in lymphocytes and buccal cells. Environ Mol Mutagen 2002; 40: 101–109.

    Article  CAS  PubMed  Google Scholar 

  518. Pastor S, Gutiérrez S, Creus A, Cebulska-Wasilewska A, Marcos R . Micronuclei in peripheral blood lymphocytes and buccal epithelial cells of Polish farmers exposed to pesticides. Mutat Res 2001; 495: 147–156.

    Article  CAS  PubMed  Google Scholar 

  519. Pastor S, Gutiérrez S, Creus A, Xamena N, Piperakis S, Marcos R . Cytogenetic analysis of Greek farmers using the micronucleus assay in peripheral lymphocytes and buccal cells. Mutagenesis 2001; 16: 539–545.

    Article  CAS  PubMed  Google Scholar 

  520. Coronas MV, Pereira TS, Rocha JA, Lemos AT, Fachel JM, Salvadori DM et al. Genetic biomonitoring of an urban population exposed to mutagenic airborne pollutants. Environ Int 2009; 35: 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  521. Huen K, Gunn L, Duramad P, Jeng M, Scalf R, Holland N . Application of a geographic information system to explore associations between air pollution and micronucleus frequencies in African American children and adults. Environ Mol Mutagen 2006; 47: 236–246.

    Article  CAS  PubMed  Google Scholar 

  522. Chen C, Arjomandi M, Qin H, Balmes J, Tager I, Holland N . Cytogenetic damage in buccal epithelia and peripheral lymphocytes of young healthy individuals exposed to ozone. Mutagenesis 2006; 21: 131–137.

    Article  CAS  PubMed  Google Scholar 

  523. Valverde M, del Carmen López M, López I, Sánchez I, Fortoul TI, Ostrosky-Wegman et al. DNA damage in leukocytes and buccal and nasal epithelial cells of individuals exposed to air pollution in Mexico City. Environ Mol Mutagen 1997; 30: 147–152.

    Article  CAS  PubMed  Google Scholar 

  524. Stich HF, Stich W, Rosin MP, Vallejera MO . Use of the micronucleus test to monitor the effect of vitamin A, beta-carotene and canthaxanthin on the buccal mucosa of betel nut/tobacco chewers. Int J Cancer 1984; 34: 745–750.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Gordon.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirowsky, J., Gordon, T. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications. J Expo Sci Environ Epidemiol 25, 354–380 (2015). https://doi.org/10.1038/jes.2014.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2014.93

Keywords

This article is cited by

Search

Quick links