Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

QTL replication and targeted association highlight the nerve growth factor gene for nonverbal communication deficits in autism spectrum disorders

Abstract

Autism Spectrum Disorder (ASD) has a heterogeneous etiology that is genetically complex. It is defined by deficits in communication and social skills and the presence of restricted and repetitive behaviors. Genetic analyses of heritable quantitative traits that correlate with ASD may reduce heterogeneity. With this in mind, deficits in nonverbal communication (NVC) were quantified based on items from the Autism Diagnostic Interview Revised. Our previous analysis of 228 families from the Autism Genetics Research Exchange (AGRE) repository reported 5 potential quantitative trait loci (QTL). Here we report an NVC QTL replication study in an independent sample of 213 AGRE families. One QTL was replicated (P<0.0004). It was investigated using a targeted-association analysis of 476 haplotype blocks with 708 AGRE families using the Family Based Association Test (FBAT). Blocks in two QTL genes were associated with NVC with a P-value of 0.001. Three associated haplotype blocks were intronic to the Nerve Growth Factor (NGF) gene (P=0.001, 0.001, 0.002), and one was intronic to KCND3 (P=0.001). Individual haplotypes within the associated blocks drove the associations (0.003, 0.0004 and 0.0002) for NGF and 0.0001 for KCND3. Using the same methods, these genes were tested for association with NVC in an independent sample of 1517 families from an Autism Genome Project (AGP). NVC was associated with a haplotype in an adjacent NGF block (P=0.0005) and one 46 kb away from the associated block in KCND3 (0.008). These analyses illustrate the value of QTL and targeted association studies for genetically complex disorders such as ASD. NGF is a promising risk gene for NVC deficits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn, text revision. American Psychiatric Association: Washington, DC, 2000.

  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). American Psychiatric Association: Washington, DC, 1994.

  3. Hallmayer J CS, Torres A, Phillips J, Cohen B, Torigoe T, Miller J et al. Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism. Arch Gen Psychiatry 2011 (e-pub ahead of print).

  4. Lainhart JE, Piven J . Diagnosis, treatment, and neurobiology of autism in children. Curr Opin Pediatr 1995; 7: 392–400.

    Article  CAS  PubMed  Google Scholar 

  5. Constantino JN . The Social Responsiveness Scale. Western Psychological Services: Los Angeles, 2002.

    Google Scholar 

  6. Abrahams BS, Geschwind DH . Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9: 341–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moldin SO, Rubenstein JLR (eds). Understanding Autism from Basic Neuroscience to Treatment. CRC Press: Boca Raton, FL, 2006.

    Book  Google Scholar 

  8. Cantor RM . Autism Spectrum Disorders: Section 39 Autism Endophenotypes and Quantitative Trait Loci. In: Amaral DG, Dawson G, Geschwind DH (eds). Oxford University Press: New York, NY, 2011.

  9. Dawson G, Webb S, Schellenberg GD, Dager S, Friedman S, Aylward E, et al. Defining the broader phenotype of autism: genetic, brain, and behavioral perspectives. Dev Psychopathol 2002 Summer 14: 581–611.

    Article  PubMed  Google Scholar 

  10. Chen GK, Kono N, Geschwind DH, Cantor RM . Quantitative trait locus analysis of nonverbal communication in autism spectrum disorder. Mol Psychiatry 2006; 11: 214–220.

    Article  CAS  PubMed  Google Scholar 

  11. Rutter M, Couteur AL, Lord C . Autism Diagnostic Interview, Revised (ADI-R) 2003.

  12. Kruglyak L, Lander ES . A nonparametric approach for mapping quantitative trait loci. Genetics 1995; 139: 1421–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P et al. The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am J Hum Genet 2001; 69: 463–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horvath S, Xu X, Laird NM . The family based association test method: strategies for studying general genotype--phenotype associations. Eur J Hum Genet 2001; 9: 301–306.

    Article  CAS  PubMed  Google Scholar 

  15. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007; 39: 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  PubMed  Google Scholar 

  17. W.H.O.. International Statistical Classification of Diseases and Related Health Problems, 10th Revision. World Health Organization: Geneva, 1992.

  18. Risi S, Lord C, Gotham K, Corsello C, Chrysler C, Szatmari P et al. Combining information from multiple sources in the diagnosis of autism spectrum disorders. J Am Acad Child Adolesc Psychiatry 2006; 45: 1094–1103.

    Article  PubMed  Google Scholar 

  19. Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C et al. A second-generation combined linkage physical map of the human genome. Genome Res 2007; 17: 1783–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Samuels ML, Witmer JA . Statistics for the Life Sciences, 3rd edition, Prentice Hall: Upper Saddle River, NJ, 2002.

    Google Scholar 

  22. Lander E, Kruglyak L . Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995; 11: 241–247.

    Article  CAS  PubMed  Google Scholar 

  23. Kleensang A, Franke D, Alcais A, Abel L, Muller-Myhsok B, Ziegler A . An extensive comparison of quantitative trait Loci mapping methods. Hum Hered 2010; 69: 202–211.

    Article  CAS  PubMed  Google Scholar 

  24. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  25. Barrett JC . Haploview: Visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009; 2009, pdb ip71.

  26. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  PubMed  Google Scholar 

  27. Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM . Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004; 26: 61–69.

    Article  PubMed  Google Scholar 

  28. Lake SL, Blacker D, Laird NM . Family-based tests of association in the presence of linkage. Am J Hum Genet 2000; 67: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Howie BN, Donnelly P, Marchini J . A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009; 5: e1000529.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316: 1341–1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH . The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. J Mol Cell Cardiol 2001; 33: 851–872.

    Article  CAS  PubMed  Google Scholar 

  32. Freed WJ . The role of nerve-growth factor (NGF) in the central nervous system. Brain Res Bull 1976; 1: 393–412.

    Article  CAS  PubMed  Google Scholar 

  33. Korsching S, Auburger G, Heumann R, Scott J, Thoenen H . Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J 1985; 4: 1389–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A . Development of a non invasive NGF-based therapy for Alzheimer′s disease. Curr Alzheimer Res 2009; 6: 158–170.

    Article  CAS  PubMed  Google Scholar 

  35. Riikonen R, Vanhala R . Levels of cerebrospinal fluid nerve-growth factor differ in infantile autism and Rett syndrome. Dev Med Child Neurol 1999; 41: 148–152.

    CAS  PubMed  Google Scholar 

  36. Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL et al. Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 2001; 49: 597–606.

    CAS  PubMed  Google Scholar 

  37. Parikh V, Evans DR, Khan MM, Mahadik SP . Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: possible implications for treatment outcome. Schizophr Res 2003; 60: 117–123.

    Article  PubMed  Google Scholar 

  38. Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C et al. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res 2009; 2: 157–177.

    Article  CAS  PubMed  Google Scholar 

  39. Ralainirina N, Brons NH, Ammerlaan W, Hoffmann C, Hentges F, Zimmer J . Mouse natural killer (NK) cells express the nerve growth factor receptor TrkA, which is dynamically regulated. PLoS One 2010; 5: e15053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Linker R, Gold R, Luhder F . Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol 2009; 29: 43–68.

    Article  CAS  PubMed  Google Scholar 

  41. Fiore M, Chaldakov GN, Aloe L . Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev Neurosci 2009; 20: 133–145.

    Article  CAS  PubMed  Google Scholar 

  42. Ralainirina N, Brons NH, Ammerlaan W, Hoffmann C, Hentges F, Zimmer J . Mouse natural killer (NK) cells express the nerve growth factor receptor TrkA, which is dynamically regulated. PLoS One 2010; 5: e15053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J . Altered T cell responses in children with autism. Brain Behav Immun 2011; 25: 840–849.

    Article  CAS  PubMed  Google Scholar 

  44. Keil A, Daniels JL, Forssen U, Hultman C, Cnattingius S, Soderberg KC et al. Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology 2010; 21: 805–808.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These analyses were supported by NIH/NIMH Autism Center of Excellence network Grant MH081754 to Daniel Geschwind (PI). We gratefully acknowledge the resources provided by the Autism Genetic Resource Exchange (AGRE) Consortium and the participating AGRE families. The Autism Genetic Resource Exchange is a program of Autism Speaks and is supported, in part, by Grant 1U24MH081810 from the National Institute of Mental Health to Clara M Lajonchere (PI). The AGRE Consortium: Dan Geschwind, MD, PhD, UCLA, Los Angeles, CA; Maja Bucan, PhD, University of Pennsylvania, Philadelphia, PA; W Ted Brown, MD, PhD, FACMG, NYS. Institute for Basic Research in Developmental Disabilities, Staten Island, NY; Rita M Cantor, PhD, UCLA School of Medicine, Los Angeles, CA; John N Constantino, MD, Washington University School of Medicine, St Louis, MO; T Conrad Gilliam, PhD, University of Chicago, Chicago, IL; Martha Herbert, MD, PhD, Harvard Medical School, Boston, MA Clara Lajonchere, PhD, Autism Speaks, Los Angeles, CA; David H Ledbetter, PhD, Emory University, Atlanta, GA; Christa Lese-Martin, PhD, Emory University, Atlanta, GA; Janet Miller, JD, PhD, Autism Speaks, Los Angeles, CA; Stanley F Nelson, MD, UCLA School of Medicine, Los Angeles, CA; Gerard D Schellenberg, PhD, University of Washington, Seattle, WA; Carol A Samango-Sprouse, EdD, George Washington University, Washington, DC; Sarah Spence, MD, PhD, UCLA, Los Angeles, CA; Matthew State, MD, PhD, Yale University, New Haven, CT Rudolph E Tanzi, PhD, Massachusetts General Hospital, Boston, MA. CIDR Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number N01-HG-65403. The authors gratefully acknowledge the families participating in the Autism Genome Project (AGP) and the main funders: Autism Speaks (USA), the Health Research Board (HRB; Ireland), the Medical Research Council (MRC; UK), Genome Canada/Ontario Genomics Institute and the Hilibrand Foundation (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Cantor.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, AH., Yoon, J., Geschwind, D. et al. QTL replication and targeted association highlight the nerve growth factor gene for nonverbal communication deficits in autism spectrum disorders. Mol Psychiatry 18, 226–235 (2013). https://doi.org/10.1038/mp.2011.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.155

Keywords

This article is cited by

Search

Quick links