Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The RAG2 C terminus suppresses genomic instability and lymphomagenesis

Abstract

Misrepair of DNA double-strand breaks produced by the V(D)J recombinase (the RAG1/RAG2 proteins) at immunoglobulin (Ig) and T cell receptor (Tcr) loci has been implicated in pathogenesis of lymphoid malignancies in humans1 and in mice2,3,4,5,6,7. Defects in DNA damage response factors such as ataxia telangiectasia mutated (ATM) protein and combined deficiencies in classical non-homologous end joining and p53 predispose to RAG-initiated genomic rearrangements and lymphomagenesis2,3,4,5,6,7,8,9,10,11. Although we showed previously that RAG1/RAG2 shepherd the broken DNA ends to classical non-homologous end joining for proper repair12,13, roles for the RAG proteins in preserving genomic stability remain poorly defined. Here we show that the RAG2 carboxy (C) terminus, although dispensable for recombination14,15, is critical for maintaining genomic stability. Thymocytes from ‘coreRag2 homozygotes (Rag2c/c mice) show dramatic disruption of Tcrα/δ locus integrity. Furthermore, all Rag2c/c p53−/− mice, unlike Rag1c/c p53−/− and p53−/− animals, rapidly develop thymic lymphomas bearing complex chromosomal translocations, amplifications and deletions involving the Tcrα/δ and Igh loci. We also find these features in lymphomas from Atm−/− mice. We show that, like ATM-deficiency3, core RAG2 severely destabilizes the RAG post-cleavage complex. These results reveal a novel genome guardian role for RAG2 and suggest that similar ‘end release/end persistence’ mechanisms underlie genomic instability and lymphomagenesis in Rag2c/c p53−/− and Atm−/− mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The C terminus of RAG2 is a tumour suppressor in developing thymocytes.
Figure 2: Rag2 c / c p53 −/− thymic lymphomas display recurrent translocations involving chromosomes that harbour antigen-receptor loci.
Figure 3: Rag2c/c p53−/− thymocytes display Tcrα/δ - and Igh -associated genomic instability.
Figure 4: The C terminus of RAG2 stabilizes the RAG post-cleavage complex.

Similar content being viewed by others

References

  1. Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001)

    Article  CAS  Google Scholar 

  2. Callen, E. et al. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 130, 63–75 (2007)

    Article  CAS  Google Scholar 

  3. Bredemeyer, A. L. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002)

    Article  CAS  Google Scholar 

  5. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Difilippantonio, M. J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Zha, S. et al. ATM-deficient thymic lymphoma is associated with aberrant tcrd rearrangement and gene amplification. J. Exp. Med. 207, 1369–1380 (2010)

    Article  CAS  Google Scholar 

  8. Callen, E. et al. Chimeric IgH-TCRα/δ translocations in T lymphocytes mediated by RAG. Cell Cycle 8, 2408–2412 (2009)

    Article  CAS  Google Scholar 

  9. Matei, I. R. et al. ATM deficiency disrupts Tcra locus integrity and the maturation of CD4+CD8+ thymocytes. Blood 109, 1887–1896 (2007)

    Article  CAS  Google Scholar 

  10. Liyanage, M. et al. Abnormal rearrangement within the α/δ T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 96, 1940–1946 (2000)

    CAS  PubMed  Google Scholar 

  11. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996)

    Article  CAS  Google Scholar 

  12. Corneo, B. et al. Rag mutations reveal robust alternative end joining. Nature 449, 483–486 (2007)

    Article  ADS  CAS  Google Scholar 

  13. Lee, G. S., Neiditch, M. B., Salus, S. S. & Roth, D. B. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117, 171–184 (2004)

    Article  CAS  Google Scholar 

  14. Jones, J. M. & Simkus, C. The roles of the RAG1 and RAG2 “non-core” regions in V(D)J recombination and lymphocyte development. Arch. Immunol. Ther. Exp. (Warsz.) 57, 105–116 (2009)

    Article  CAS  Google Scholar 

  15. Liang, H. E. et al. The “dispensable” portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity 17, 639–651 (2002)

    Article  CAS  Google Scholar 

  16. Qiu, J. X., Kale, S. B., Yarnell Schultz, H. & Roth, D. B. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol. Cell 7, 77–87 (2001)

    Article  CAS  Google Scholar 

  17. Steen, S. B., Han, J.-O., Mundy, C., Oettinger, M. A. & Roth, D. B. Roles of the “dispensable” portions of RAG-1 and RAG-2 in V(D)J recombination. Mol. Cell. Biol. 19, 3010–3017 (1999)

    Article  CAS  Google Scholar 

  18. Curry, J. D. & Schlissel, M. S. RAG2’s non-core domain contributes to the ordered regulation of V(D)J recombination. Nucleic Acids Res. 36, 5750–5762 (2008)

    Article  CAS  Google Scholar 

  19. Talukder, S. R., Dudley, D. D., Alt, F. W., Takahama, Y. & Akamatsu, Y. Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice. Nucleic Acids Res. 32, 4539–4549 (2004)

    Article  CAS  Google Scholar 

  20. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994)

    Article  CAS  Google Scholar 

  21. Liao, M. J. et al. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol. Cell. Biol. 18, 3495–3501 (1998)

    Article  CAS  Google Scholar 

  22. Forster, A., Hobart, M., Hengartner, H. & Rabbitts, T. H. An immunoglobulin heavy-chain gene is altered in two T-cell clones. Nature 286, 897–899 (1980)

    Article  ADS  CAS  Google Scholar 

  23. Haines, B. B. et al. Block of T cell development in P53-deficient mice accelerates development of lymphomas with characteristic RAG-dependent cytogenetic alterations. Cancer Cell 9, 109–120 (2006)

    Article  CAS  Google Scholar 

  24. Dudley, D. D. et al. Impaired V(D)J recombination and lymphocyte development in core RAG1-expressing mice. J. Exp. Med. 198, 1439–1450 (2003)

    Article  CAS  Google Scholar 

  25. Difilippantonio, S. et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456, 529–533 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Arnal, S. M., Holub, A. J., Salus, S. S. & Roth, D. B. Non-consensus heptamer sequences destabilize the RAG post-cleavage complex, making ends available to alternative DNA repair pathways. Nucleic Acids Res. 38, 2944–2954 (2010)

    Article  CAS  Google Scholar 

  27. Helmink, B. A. et al. MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. J. Exp. Med. 206, 669–679 (2009)

    Article  CAS  Google Scholar 

  28. Deriano, L., Stracker, T. H., Baker, A., Petrini, J. H. & Roth, D. B. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol. Cell 34, 13–25 (2009)

    Article  CAS  Google Scholar 

  29. Simsek, D. & Jasin, M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nature Struct. Mol. Biol. 17, 410–416 (2010)

    Article  CAS  Google Scholar 

  30. Li, Z., Dordai, D. I., Lee, J. & Desiderio, S. A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 5, 575–589 (1996)

    Article  Google Scholar 

  31. Theunissen, J. W. & Petrini, J. H. Methods for studying the cellular response to DNA damage: influence of the Mre11 complex on chromosome metabolism. Methods Enzymol. 409, 251–284 (2006)

    Article  CAS  Google Scholar 

  32. Multani, A. S. et al. Caspase-dependent apoptosis induced by telomere cleavage and TRF2 loss. Neoplasia 2, 339–345 (2000)

    Article  CAS  Google Scholar 

  33. Pathak, S. Chromosome banding techniques. J. Reprod. Med. 17, 25–28 (1976)

    CAS  PubMed  Google Scholar 

  34. Hewitt, S. L. et al. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunol. 10, 655–664 (2009)

    Article  CAS  Google Scholar 

  35. Skok, J. A. et al. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nature Immunol. 8, 378–387 (2007)

    Article  CAS  Google Scholar 

  36. Yang, Y. H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002)

    Article  Google Scholar 

  37. Olshen, A. B., Venkatraman, E. S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004)

    Article  Google Scholar 

  38. Aguirre, A. J. et al. High-resolution characterization of the pancreatic adenocarcinoma genome. Proc. Natl Acad. Sci. USA 101, 9067–9072 (2004)

    Article  ADS  CAS  Google Scholar 

  39. R. development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. (2006)

Download references

Acknowledgements

We thank M. Schlissel for the gift of core Rag2 mice, F. Alt for the gift of core Rag1 mice and S. Hewitt for the Igh BAC probes. D.B.R. was supported by National Institutes of Health Roadmap Initiative in Nanomedicine through a Nanomedicine Development Center award (1PN2EY018244), a National Institutes of Health grant CA104588 and the Irene Diamond Fund. L.D. is a Fellow of The Leukemia and Lymphoma Society. A.V.A. was supported in part by grant 1UL1RR029893 from the National Center for Research Resources, National Institutes of Health. J.A.S. was supported by a National Institutes of Health grant R01GM086852, a National Institutes of Health Challenge grant NCI R01CA145746-01, a Leukemia and Lymphoma Scholar Award and a Wellcome trust project grant 085096.

Author information

Authors and Affiliations

Authors

Contributions

L.D. and D.B.R. conceived the study and co-wrote the manuscript. L.D. designed the experiments. L.D., J.C., M.C. and A.M. performed the experiments. Y.C. provided assistance with the mouse colonies. A.V.A. performed the aCGH data analysis. J.A.S. and S.C. provided technical and conceptual support. J.C. and J.A.S revised the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to David B. Roth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-13 with legends, Supplementary Table 1 and an additional reference. (PDF 12155 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deriano, L., Chaumeil, J., Coussens, M. et al. The RAG2 C terminus suppresses genomic instability and lymphomagenesis. Nature 471, 119–123 (2011). https://doi.org/10.1038/nature09755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09755

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer