Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Identification of Genes Involved in the Rhizobium-Legume Symbiosis by Mu-dI (Kan, lac)-Generated Transcription Fusions

Abstract

The process by which free-living Rhizobium forms nitrogen-fixing nodules on the roots of leguminous plants involves the induction and repression of a number of bacterial genes. To help identify these genes and to determine their mode of regulation, we have transposed the E. coli lac operon, minus its promoter, randomly around the chromosome of R. japonicum, a soybean nodulating bacterium. This was accomplished using the defective phage, mu-dI (Kan, lac) placed onto a self-transmissible, narrow host-range suicide vector, pGS6. Among the mu-dI insertion mutants examined, auxotrophs were detected at frequencies of about 0.3%, and nodulation and nitrogen fixation defective mutants at about 4%. Many of the symbiotically defective mutants were found to have deletions in their indigenous plasmids. Three mutants showed increased β-galactosidase levels when grown in the presence of soybean or kidney bean root-extracts but not in the presence of root-extracts from other legumes or a non-legume, indicating specific plant control of Rhizobium gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jordon, D.C. and Allen, O.N. 1974. Genus II. Rhizobium, p. 262–264. In: Bergey's Manual of Determinative Bacteriology, 8th ed. R. E. Buchanan and N. E. Gibbons (eds.) The Williams and Wilkins Co., Baltimore.

    Google Scholar 

  2. Vincent, J.M. 1974. Root-nodule symbiosis with Rhizobium, p. 266–341. In: Biology of Nitrogen Fixation. Quispel, A. (ed.) North Holland Publishing Co., Amsterdam.

    Google Scholar 

  3. Verma, D.P.S. and Long, S. 1983. The molecular biology of Rhizobium-legume symbiosis, p. 211–245. Int. Rev. Cytol. Suppl. 14, K. Jeon (ed.), Academic Press, New York.

    Google Scholar 

  4. Beynon, J.L., Beringer, J.E. and Johnston, A.W.B. 1980. Plasmids and host-range in Rhizobium leguminosarum and Rhizobium phaseoli. J. Gen. Microbiol. 120: 421–429.

    Google Scholar 

  5. Brewin, N.J., Beringer, J.E. and Johnston, A.W.B. 1980. Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. J. Gen. Microbiol. 120: 413–420.

    Google Scholar 

  6. Brewin, N.J., Beringer, J.E., Buchanan-Wollaston, A.V., Johnston, A.W.B. and Hirsch, P.R. 1980. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. J. Gen. Microbiol. 116: 261–270.

    CAS  Google Scholar 

  7. Djordjevic, M.A., Zurkowski, W. and Rolfe, B.G. 1982. Plasmids and stability of symbiotic properties of Rhizobium trifolii. J. Bacteriol. 151: 560–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hombrecher, G., Brewin, N.J. and Johnston, A.W.B. 1981. Linkage of genes for nitrogenase and nodulation ability on plasmids in Rhizobium leguminosarum and R. phaseoli. Mol. Gen. Genet. 182: 133–136.

    Article  CAS  Google Scholar 

  9. Hooykaas, P.J.J., Van Brussel, A.A.N., den Dulk-Ras, H., van Slogteren, S. and Schilperoort, R.A. 1981. Sym plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium. Nature 291: 351–353.

    Article  CAS  Google Scholar 

  10. Johnston, A.W.B., Beynon, J.L., Buchanan-Wollaston Setchell, S.M., Hirsch, P.R. and Beringer, J.E. 1978. High frequency transfer of nodulation ability between strains and species of Rhizobium. Nature 276: 634–636.

    Article  Google Scholar 

  11. Nuti, M.P., Lepidi, A.A., Prakash, R.K., Schilperoort, R.A. and Cannon, F.C. 1979. Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature 282: 533–535.

    Article  CAS  Google Scholar 

  12. Beringer, J.E. 1980. The development of Rhizobium genetics. J. Gen. Microbiol. 116 1–7.

    CAS  Google Scholar 

  13. Beringer, J.E., Beynon, J.L., Buchanan-Wollaston, A.V. and Johnston, A.W.B. 1978. Transfer of drug resistance transposon Tn5 to Rhizobium. Nature 276: 633–634.

    Article  Google Scholar 

  14. Berg, D.E. and Berg, C.M. 1983. The prokaryotic transposable element Tn5. Bio/technology 1: 417–433.

    Article  Google Scholar 

  15. Hom, S.S.M., Uratsu, S.L. and Hoang, F. 1984. Transposon Tn5-induced mutagenesis of Rhizobium japonicum yielding a wide variety of mutants. J. Bacteriol. 159: 335–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kondorosi, E., Banfalvi, Z. and Kondorosi, A. 1984. Physical and genetic analysis of a symbiotic region of Rhizobium meliloti: Identification of nodulation genes. Mol. Gen. Genet. In press.

    Google Scholar 

  17. Kondorosi, E., Banfalvi, Z., Slaska-Kiss, K. and Kondorosi, A. 1983. Analysis of symbiotic nitrogen fixation genes carried by Rhizobium meliloti megaplasmid, p. 259–275. In: UCLA Symposium on molecular and cellular biology; Plant Molecular Biology. R. Goldberg (ed.), AR Liss Inc., New York.

    Google Scholar 

  18. Meade, H.M., Long, S.R., Ruvkun, G.B., Brown, S.E. and Ausubel, F.M. 1983. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bacteriol. 149: 114–122.

    Google Scholar 

  19. Rolfe, B.G., Djordjevic, M., Scott, K.F., Hughes, J.E., Badenoch-Jones, J., Gresshoff, P.M., Cen, Y., Dudman, W.F., Zurkowski, W. and Schine, J. 1981. Analysis of nodule forming ability of fast-growing Rhizobium strains, p. 142–145. In: Current Perspectives in Nitrogen Fixation. A, H. Gibson, and W. E. Newton (eds.), Australian Academy of Sciences, Canberra.

    Google Scholar 

  20. Rostas, K., Sista, P.R., Stanley, J. and Verma, D.P.S. 1984. Transposon mutagenesis of Rhizobium japonicum. Mol. Gen. Genet. In press.

    Google Scholar 

  21. Selvaraj, G. and Iyer, V.N. 1983. Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J. Bacteriol. 156: 1292–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Simon, R., Priefer, U. and Puhler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/technology 1: 784–791.

    Article  CAS  Google Scholar 

  23. Dixon, R., Eady, R.R., Espin, G., Hill, S., Iaccarino, M., Kahn, D. and Merrick, M. 1980. Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif) gene cluster with gene fusions. Nature 286: 128–132.

    Article  CAS  PubMed  Google Scholar 

  24. MacNeil, D., Zhu, J. and Brill, W.J. 1981. Regulation of nitrogen fixation in Klebsiella pneumoniae: isolation and characterization of strains with nif-lac fusions. J. Bacteriol. 145: 348–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sundaresen, V., Jones, J.D.G., Ow, D.W. and Ausubel, F.M. 1983. Conservation of nitrogenase promoters from Rhizobium meliloti and Klebsiella pneumoniae. Nature 301: 728–731.

    Article  Google Scholar 

  26. Sundaresan, V., Ow, D.W. and Ausubel, F.M. 1983. Activation of Klebsiella pneumoniae and Rhizobium meliloti nitrogenase promoters by gln (ntr) regulatory proteins. Proc. Natl. Acad. Sci. USA 80: 4030–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Szeto, W.W., Zimmerman, J.L., Sundaresan, V. and Ausubel, F.M. 1984. A Rhizobium meliloti symbiotic regulatory gene. Cell 36: 1035–1043.

    Article  CAS  PubMed  Google Scholar 

  28. Kahn, M.L. and Timblin, C.R. 1984. Gene fusion vehicles for the analysis of gene expression in Rhizobium meliloti. J. Bacteriol. 158: 1070–1077.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Keyser, H.H., Bohlool, B.B., Hu, T.S. and Weber, D.F. 1982. Fast-growing rhizobia isolated from root nodules of soybean. Science 215: 1631–1632.

    Article  CAS  PubMed  Google Scholar 

  30. Sadowsky, M.J., Keyser, H.H. and Bohlool, B.B. 1983. Biochemical characterization of fast- and slow-growing rhizobia that nodulate soybeans. Int. J. Syst. Bacteriol. 33: 716–722.

    Article  CAS  Google Scholar 

  31. Masterson, R.V., Russell, P.R. and Atherly, A.G. 1982. Nitrogen Fixation (nif) genes and large plasmids of Rhizobium japonicum. J. Bacteriol. 152: 928–931.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sadowsky, M.J. and Bohlool, B.B. 1983. Possible involvement of a megaplasmid in nodulation of soybeans by fast growing rhizobia from China. Appl. Environ. Microbiol. 46: 906–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Castilho, B.A., Olfson, P. and Casadaban, M.J. 1984. Plasmid insertion mutagenesis and lac fusion with mini-bacteriophage transposon. J. Bacteriol. 158: 488–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Casadaban, M.J. and Cohen, S.N. 1979 Lactose genes fused to exogenous promoters in one step using a mu-lac bacteriophage. Proc. Natl. Acad. Sci. USA 76: 4530–4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wanner, B.W. and McSharry, R. 1982. Phosphate-controlled gene expression in Escherichia coli K12 using mu-dI directed lacZ fusions. J. Mol. Biol. 158: 347–363.

    Article  CAS  PubMed  Google Scholar 

  36. Hughes, K.T. and Roth, J.R. 1984. Conditionally transposition-defective derivative of mu-dI (Amp, lac). J. Bacteriol. 159: 130–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, J.H., Heffernan, L. and Wilcox, G. 1980. Isolation of ara-lac gene fusions in Salmonella typhimurium LT2 by using transducing bacteriophage mu-d (Apr, lac). J. Bacteriol. 143: 1325–1331.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rosenfeld, S.A. and Brenchley, J.E. 1980. Bacteriophage P1 as a vehicle for mu mutagenesis of Salmonella typhimurium. J. Bacteriol. 144: 848–851.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jayasawal, R.K., Bressan, R.A. and Handa, A.K. 1984. Mutagenesis of Erwinia cartovora subsp. cartovora with bacteriophage mu-dI (Apr, lac, cts62): construction of his-lac gene fusions. J. Bacteriol. 158: 764–766.

    Google Scholar 

  40. Casadaban, M.J. and Chou, J. 1984. In vivo formation of gene fusions encoding hybrid B-galactosidase proteins in one step with transposable Mu-lac transducing phage. Proc. Natl. Acad. Sci. USA 81: 535–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cozzarelli, N.R., Kelly, R.B. and Kornberg, A. 1968. A minute circular DNA from E. coli 15. Proc. Natl. Acad. Sci. USA 60: 992–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Konarska-Kozlowska, M. and Iyer, V.N. 1981. Physical and genetic organization of the IncN-group plasmid pCU1. Gene 14: 195–204.

    Article  CAS  PubMed  Google Scholar 

  43. Leemans, J., Inze, D., Villarroel, R., Engler, G., Harnalsteens, J.P., DeBlock, M. and Van Montagu, M. 1981. Plasmid mobilization as a tool for in vivo genetic engineering, p. 401–409. In Molecular biology, pathogenicity, and ecology of bacterial plasmids. S. B. Levy, R. C. Clowes, and E. L. Koenig (eds.) Plenum Press, New York.

    Chapter  Google Scholar 

  44. Ruvkun, G.B., Long, S.R., Meade, H.M., van den Bos, R.C. and Ausubel, F.M. 1982. ISRm1: A Rhizobium meliloti insertion sequence that transposes preferentially into nitrogen-fixation genes. J. Mol. Appl. Genet. 1: 405–418.

    CAS  PubMed  Google Scholar 

  45. Legocki, R. 1981. Identification of “nodule-specific” plant proteins (nodulins) from soybean root nodules. Ph.D. Thesis., Department of Biology, McGill University, Montreal, Quebec, Canada.

    Google Scholar 

  46. Allen, O.N. and Allen, E.K. 1981. The leguminosae. A source book of characteristics, uses and nodulation: University of Wisconsin Press, Madison.

    Book  Google Scholar 

  47. Vincent, J.M. 1970. A manual for the practical study of root-nodule bacteria. IBP Handbook 15. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  48. Faelen, M., Huisman, O. and Toussaint, A. 1978. Involvement of phage Mu-1 early functions in Mu-mediated chromosomal rearrangements. Nature 271: 580–582.

    Article  CAS  PubMed  Google Scholar 

  49. Nano, F.E. and Kaplan, S. 1984. Plasmid rearrangements in the photosynthetic bacterium Rhodopseudomonas sphaeroides. J. Bacteriol. 158: 1094–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Noel, K.D., Sanchez, A., Fernandez, L., Leemans, T. and Cevallos, M.A. 1984. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J. Bacteriol. 158: 148–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hirsch, P.R., Van Montagu, M., Johnston, A.W.B., Brewin, N.J. and Schell, J. 1980. Physical identification of bacteriocinogenic, nodulation, and other plasmids in Rhizobium leguminosarum. J. Gen. Microbiol. 120: 403–412.

    Google Scholar 

  52. Beringer, J.E. 1974. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84: 188–198.

    CAS  PubMed  Google Scholar 

  53. Miller, J.H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  54. Buchanan-Wollaston, A.V., Beringer, J.E., Brewin, N.J., Hirsch, P.R. and Johnston, A.W.B. 1980. Isolation of symbiotically defective mutants of Rhizobium leguminosarum by insertion of the transposon Tn5 into a transmissible plasmid. Mol. Gen. Genet. 178: 185–190.

    Article  CAS  Google Scholar 

  55. Haugland, R. and Verma, D.P.S. 1981. Interspecific plasmid and genomic DNA homologies and localization of nif genes in effective and ineffective strains of Rhizobium japonicum. J. Mol. Appl. Genet. 1: 205–217.

    CAS  PubMed  Google Scholar 

  56. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. In Molecular cloning a laboratory manual, p. 109. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  57. Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503.

    Article  CAS  PubMed  Google Scholar 

  58. Holmes, D.S. and Quigley, M. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193–197.

    Article  CAS  PubMed  Google Scholar 

  59. Casadaban, M.J., Chou, J. and Cohen, S.N. 1980. In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J. Bacteriol. 143: 971–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Leonard, L.T. 1943. A simple assembly for use in the testing of cultures of rhizobia. J. Bacteriol. 45: 523–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kosslak, R.M. and Bohlool, B.B. 1984. Suppression of nodule development of one side of a split root system of soybeans caused by prior inoculation of the other side. Plant Physiol. 75: 125–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoagland, D.R. and Arnon, D.I. 1938. The water culture method for growing plants without soil. California A9, Exp. Std. Circular ♯347.

    Google Scholar 

  63. Hardy, R.W.F., Holsten, R.D., Jackson, E.K. and Burns, R.C. 1968. The C2H2-C2H4 assay for nitrogen fixation; laboratory and field evaluation. Plant Physiol. 43: 1185–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bolivar, F. and Backman, K. 1979. Plasmids of Escherichia coli as cloning vectors. Methods Enzymol. 68: 243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, E., Sadowsky, M. & Verma, D. Identification of Genes Involved in the Rhizobium-Legume Symbiosis by Mu-dI (Kan, lac)-Generated Transcription Fusions. Nat Biotechnol 3, 143–149 (1985). https://doi.org/10.1038/nbt0285-143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0285-143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing