Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A temperature-regulated replicon-based DNA expression system

Abstract

We present a temperature-regulated, alphavirus replicon-based DNA expression system. The system is regulated by a viral temperature-sensitive RNA-dependent RNA replicase, creating a temperature-dependent RNA amplification loop. Because of this positive feedback, the system exhibits both low background and high inducibility. We observed 700-fold induction in transiently transfected cells, and over 104-fold induction in stably transfected cells. The high stringency of inducibility allowed the generation of stable cell lines expressing a highly toxic protein upon temperature shift. These data suggest that the present expression system could simplify bioprocess engineering strategies, especially in situations where the cloned protein has detrimental effects on host cell metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CytTS expression vector carries the genes for the noncytopathic, temperature-sensitive viral replicase and the gene of interest (GOI) under the control of the subgenomic promoter (sg) and is stably integrated in the host cell chromosome.
Figure 2: Temperature dependence and levels of expression.
Figure 3: Kinetics of marker protein expression.
Figure 4: Production of β-IFN and EPO by the temperature-regulated expression system.
Figure 5: Generation of stable cell lines that express a toxic protein upon induction.

Similar content being viewed by others

References

  1. Cregg, J.M., Vedvick, T.S. & Raschke, W.C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11, 905–910 (1993).

    CAS  PubMed  Google Scholar 

  2. Makrides, S.C. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512–538 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Umãna, P., Jean-Mariet, J., Amstutz, H., Moudry, R. & Bailey, J.E. Engineered glycoforms of an anti-neuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat. Biotechnol. 17, 176–180 (1999).

    Article  PubMed  Google Scholar 

  4. Fussenegger, M., Schlatter, S., Datwijler, D., Mazur, X. & Bailey, J.E. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 16, 468–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Saez, E., No, D., West, A. & Evans, R.M. Inducible gene expression in mammalian cells and transgenic mice. Curr. Opin. Biotechnol. 8, 608–616 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-response promoters. Proc. Natl. Acad. Sci USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mangelsdorf, D.J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. No, D., Yao, T. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci USA 93, 3346–3351 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rossi, F.M.V. & Blau, H.M. Recent advances in inducible gene expression systems. Curr. Opin. Biotechnol. 9, 451–456 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Xiong, C. et al. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Schlesinger, S. Alphavirus vectors for the expression of heterologous genes. Trends Biotechnol. 11, 18–22 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liljeström, P. & Garoff, H. A new generation of animal cell expression vectorsbased on the Semliki Forest virus replicon. Bio/Technology 9, 1356–1361 (1991).

    Article  Google Scholar 

  13. Liljeström, P. Alphavirus expression systems. Curr. Opin. Biotechnol. 5, 495–500 (1994).

    Article  PubMed  Google Scholar 

  14. Strauss, J.H. & Strauss, E.G. The alphaviruses: gene expression, replication and evolution. Microbiol. Rev. 58, 491–562 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Herweijer et al. A plasmid-based self-amplifying Sindbis virus vector. Hum. Gene Ther. 6, 1495–1501 (1995).

    Article  Google Scholar 

  16. Dubensky, T.W. et al. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J. Virol. 70, 508–519 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Berglund, P., Tubelekas, I. & Liljeström, P. Alphaviruses as vectors for gene delivery. Trends Biotechnol. 14, 130–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Dryga, S.A., Dryga, O.A. & Schlesinger, S. Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. Virology 228, 74–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Agapov, E.V. et al. Non-cytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc. Natl. Acad. Sci. USA 95, 12989–12994 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hahn, Y.S., Grakoui, A., Rice, C.M., Strauss, E.G. & Strauss, J.H. Mapping of RNA temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4. J. Virol. 63, 1194–1202 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Frolov, I. & Schlesinger, S. Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon. J. Virol. 68, 8111–8117 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sjöberg, E.M., Suomalainen, M. & Garoff, H. A significant improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. Bio/Technology 12, 1127–1131 (1994).

    Article  Google Scholar 

  23. Stanger, B.Z., Leder, P., Lee, T.H., Kim, E., & Seed, B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513–523 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Bredenbeek, P.J ., Frolov, I., Rice, C.M. & Schlesinger, S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J. Virol. 67, 6439–6446 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jordan, M., Schallhorn, A. & Wurm, F.M. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acid Res. 24, 596–601 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placental alkaline phosphatases: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Sondra Schlesinger, Washington University (St. Louis, MO), for many helpful discussions and for providing the plasmids, p987BBneo and p987SinRep96. We acknowledge Dr. W.P.C. Stemmer, Maxygen (Redwood City, CA) for the GFP gene, Dr. P. Vito, Basel Institute for Immunology) for the RipDD gene, and we thank Drs. F. Hennecke, W. Hazenberg, and G. Orberger for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Renner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boorsma, M., Nieba, L., Koller, D. et al. A temperature-regulated replicon-based DNA expression system. Nat Biotechnol 18, 429–432 (2000). https://doi.org/10.1038/74493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing