Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface-displayed viral antigens on Salmonella carrier vaccine

Abstract

We have developed a recombinant live oral vaccine using the ice-nucleation protein (Inp) from Pseudomonas syringae to display viral antigens on the surface of Salmonella spp. Fusion proteins containing viral antigens were expressed in the oral vaccine strain, Salmonella typhi Ty21a. Surface localization was verified by immunoblotting and fluorescence-activated cell sorting. The immunogenicity of surface-displayed viral antigens on the recombinant live vaccine strain was assessed in mice inoculated intranasally and intraperitoneally. Inoculation resulted in significantly higher serum antibody level than those induced by viral antigens expressed intracellularly. Thus, this multivalent mucosal live vaccine may provide an effective means for inducing mucosal or systemic immune responses against multiple viral antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression and localization of fusion proteins as shown by western blot with anti-HBsAg antibody (A and B, strips a-c) and anti-HCV core monoclonal antibody (B, strip d).
Figure 2
Figure 3: Serum anti-HBsAg IgG titers in mice in preimmune sera (0) or following one (a) or two (b) immunizations of recombinant S. typhi Ty21a cells harboring surface display plasmids (white bars, pKInc; diagonally hatched bars, pKInH; black bars, pKInHc; gray bars, pKIncH; horizontally hatched bars, pKInHcC).
Figure 4: Serum anti-HCV core IgG titers in mice inoculated with S. typhi Ty21a harboring the plasmid pKInHcC once (A) or twice (B).
Figure 5

Similar content being viewed by others

References

  1. Georgiou, G. et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinational libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34 (1997).

    Article  CAS  Google Scholar 

  2. O'Callaghan, D. et al. Immunogenicity of foreign peptide epitopes expressed in bacterial envelope proteins. Res. Microbiol. 141, 963–969 (1998).

    Article  Google Scholar 

  3. Curtiss, R. et al. Antigen delivery systems for analysing host immune responses and for vaccine development. Trends Biotechnol. 8, 237–240 (1990).

    Article  Google Scholar 

  4. Roberts, M., Chatfield, S.N. & Dougan, G. In Novel delivery systems for oral vaccines. (eds O'Hagan, D.T.) 27–58 (CRC Press, Inc., New York 1994).

    Google Scholar 

  5. Hofnung, M. Expression of foreign polypeptides at the Escherichia coli cell surface. Methods Cell Biol. 34, 77–105 (1991).

    Article  CAS  Google Scholar 

  6. Charbit, A., Molla, A., Saurin, W. & Hofnung, M. Versatility of a vector for expressing foreign polypeptides at the surface of Gram-negative bacteria. Gene 70, 181–189 (1988).

    Article  CAS  Google Scholar 

  7. Jung, H.C., Lebeault, J.M. & Pan, J.G. Surface display of Zymomonas mobils levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16, 576–560 (1998).

    Article  CAS  Google Scholar 

  8. Kozloff, L.M., Turner, M.A. & Arellano, F. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J. Bacteriol. 173, 6528–6536 (1991).

    Article  CAS  Google Scholar 

  9. Green, R.L., Corotto, L.V. & Warren, G.J. Deletion mutagenesis of the ice nucleation gene from Pseudomonas syringae S203. Mol. Gen. Genet. 215, 165–172 (1988).

    Article  CAS  Google Scholar 

  10. Wolber, P.K. Bacterial ice nucleation. Adv. Microb. Physiol. 34, 203–235 (1993).

    Article  CAS  Google Scholar 

  11. Nemecek-Marshall, M., LaDuca, R. & Fall, R. High level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J. Bacteriol. 175, 4062–4070 (1993).

    Article  CAS  Google Scholar 

  12. Jung, H.C., Park, J.H., Park, S.H., Lebeault, J.M. & Pan, J.G. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb. Technol. 22, 348–354 (1998).

    Article  CAS  Google Scholar 

  13. Cardenas, L. & Clements, J.D. Oral immunization using live attenuated Salmonella spp. as carriers of foreign antigens. Clin. Microbiol. Rev. 5, 328–342 (1992).

    Article  CAS  Google Scholar 

  14. Sousa, C., Cebolla, A. & de Lorenzo, V. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14, 1017–1020 (1996).

    Article  CAS  Google Scholar 

  15. Agterberg, M., Adriaanse, H., van Bruggen, A., Karperien, M. & Tommassen, J. Outer membrane PhoE protein of Escherichia coli K-12 as an exposure vector: possibilities and limitations. Gene 88, 37–45 (1990).

    Article  CAS  Google Scholar 

  16. Agterberg, M., Adriaanse, H., Barteling, S., van Maanen, K. & Tommassen, J. Protection of guinea-pigs against foot-and-mouth disease virus by immunization with a PhoE–FMDV hybrid protein. Vaccine 8, 438–440 (1990).

    Article  CAS  Google Scholar 

  17. Wong, R.S.Y., Wirtz, R.A. & Hancock, R.E.W. Pseudomonas aeruginosa outer membrane protein OprF as an expression vector for foreign epitopes: the effects of positioning and length on the antigenicity of the epitope. Gene 158, 55–60 (1995).

    Article  CAS  Google Scholar 

  18. Laukkanen, M.-L., Teeri, T.T. & Keinanen, K. Lipid-tagged antibodies: bacterial expression and characterization of a lipoprotein–single-chain antibody fusion protein. Protein Engineer. 6, 449–454 (1993).

    Article  CAS  Google Scholar 

  19. Cornelis, P. et al. Development of new cloning vectors for the production of immunogenic outermembrane fusion proteins in Escherichia coli. Bio/Techology 14, 203–208 (1996).

    CAS  Google Scholar 

  20. Georgiou, G. et al. Display of β-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp'-OmpA'—lactamase fusions. Protein Engineer. 9, 239–247 (1996).

    Article  CAS  Google Scholar 

  21. Chen, G., Cloud, J., Georgiou, G. & Iverson, B.L. A quantitative immunoassay utilizing Escherichia coli cells possessing surface-exposed single chain Fv molecules. Biotechnol. Progr. 12, 572–574 (1996).

    Article  CAS  Google Scholar 

  22. Suzuki, T., Lett, M.-C. & Sasakawa, C. Extracellular transport of VirG protein in Shigella. J. Biol. Chem. 270, 30874–30880 (1995).

    Article  CAS  Google Scholar 

  23. Lu, Z. et al. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein–protein interactions. Bio/Technology 13, 366–372 (1995).

    CAS  PubMed  Google Scholar 

  24. Pallesen, L., Poulsen, L.K., Christiansen, G. & Klemm, P. Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences. Microbiology 141, 2839–2848 (1995).

    Article  CAS  Google Scholar 

  25. Newton, S.M.C. et al. Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in the flagellar protein of Salmonella live vaccine. Res. Microbiol. 146, 203–216 (1995).

    Article  CAS  Google Scholar 

  26. Kornacker, M.G. & Pugsley, A.P. The normally periplasmic enzyme β-lactamase is specifically and efficiently translocated through the Escherichia. coli outer membrane when it is fused to the cell-surface enzyme pullulanase. Mol. Microbiol. 4, 1101–1109 (1990).

    Article  CAS  Google Scholar 

  27. Chabalgoity, J.A., Khan, C.M.A., Nash, A.A. & Hormaeche, C.E. A Salmonella typhimurium htrA live vaccine expressing multiple copies of a peptide comprising amino acids 8–23 of herpes simplex virus glycoprotein D as a genetic fusion to tetanus toxin fragment C protects mice from herpes simplex virus infection. Mol. Microbiol. 19, 791–801 (1996).

    Article  CAS  Google Scholar 

  28. Hone, D.M. et al. Optimization of live oral Salmonella–HIV-1 vaccine vectors for the induction of HIV-specific mucosal and systemic immune responses. J. Biotechnol. 44, 203–207 (1996).

    Article  CAS  Google Scholar 

  29. McGhee, J.R. et al. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine 10, 75–88 (1992).

    Article  CAS  Google Scholar 

  30. Leclerc, C., Charbit, A., Molla, A. & Hofnung, M. Antibody response to a foreign epitope expressed at the surface of recombinant bacteria: importance of the route of immunization. Vaccine 7, 242–248 (1989).

    Article  CAS  Google Scholar 

  31. Dunn, M., Al-Ramadi, B.K., Barthold, S.-W., Flavell, R.A. & Fikrig, E. Oral vaccination with an attenuated Salmonella typhimurium strain expressing Borrelia burgdorferi OspA prevents murine Lyme Borreliosis. Infect. Immun. 63, 1611–1614 (1995).

    Google Scholar 

  32. Su, G.-F., Brahmbhatt, H.N., Wehland, J., Rohde, M. & Timmis, K.N. Construction of stable LamB-Shiga toxin B subunit hybrids: analysis of expression in Salmonella typhimurium aroA strains and stimulation of B subunit-specific mucosal and serum antibody responses. Infect. Immun. 60, 3345–3359 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schorr, J., Knapp, B., Hundt, E., Küpper, H.A. & Amman, E. Surface expression of malarial antigens in Salmonella typhimurium: Induction of serum antibody response upon oral vaccination of mice. Vaccine 9, 675–681 (1991).

    Article  CAS  Google Scholar 

  34. Barry, E.M. et al. Expression and immunogenicity of pertussis toxin S1 subunit-tetanus toxin fragment C fusions in Salmonella typhi vaccine strain CVD908. Infect. Immun. 64, 4172–4181 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Galen, J.E. et al. A murine model of intranasal immunization to assess the immunogenicity of attenuated Salmonella typhi live vector vaccines in stimulating serum antibody responses to expressed foreign antigens. Vaccine 15, 700–708 (1997).

    Article  CAS  Google Scholar 

  36. O'Callaghan, D., Maskell, D., Liew, F.Y., Easmon, C.S.F. & Dougan, G. Characterization of aromatic-dependent and purine-dependent Salmonella typhimurium: studies on attenuation, persistence, and ability to induce protective immunity in BALB/c mice. Infect. Immun. 56, 419–423 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Maurer, J., Jose, J. & Meyer, T.F. Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J. Bacteriol. 179, 794–804 (1997).

    Article  CAS  Google Scholar 

  38. Pohlner, J., Halter, R., Beyreuther, K. & Meyer, T.F. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325, 458–462 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant NRI 2000 from MOST (Ministry of Science and Technology) and grant BSKP1011 from KRIBB (Korea Research Institute of Bioscience and Biotechnology) of Korea. We thank Dr. S.A. Shin, Dr. H.C. Jung, and Dr. M.H. Sung for technical help and continuous encouragement during this work, and Dr. K. Shimotohno (National Cancer Center Research Institute, Japan) for a generous gift of p740 cDNA plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul-Joong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Shin, KS., Pan, JG. et al. Surface-displayed viral antigens on Salmonella carrier vaccine. Nat Biotechnol 18, 645–648 (2000). https://doi.org/10.1038/76494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing