Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Mapping of a Protective Epitope of Pertussis Toxin by In Vitro Refolding of Recombinant Fragments

Abstract

Antigenic determinants are often composed of discontiguous polypeptide segments, adjacent on protein surfaces, which are difficult to map by conventional techniques. Here we show that although monoclonal antibodies did not recognize recombinant molecules containing only the aminoterminal or only the carboxyterminal part of a protein, after in vitro refolding they are able to recognize a mixture of the two molecules. This suggests that two molecules, each containing part of a discontiguous epitope, are able to reconstitute in vitro the conformation recognized by a monoclonal antibody. Mapping of the regions required for antibody binding can therefore be achieved by in vitro refolding of recombinant molecules. Site-directed mutagenesis is then used to further define the sequences involved in antibody recognition. This new approach was used to map a discontiguous, conformational epitope on the S1 subunit of pertussis toxin. The analysis revealed that pertussis toxin is likely to contain only one immunodominant epitope, which is recognized by all seven protective monoclonal antibodies available to us. In theory, the method described can be used to map conformational epitopes in any protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tamura, M., Nogimori, L., Murai, S., Yajima, M., Itlo, K., Katada, T., Ui, M. and Ishii, S. 1982. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 21:5516–5522.

    Article  CAS  Google Scholar 

  2. Nicosia, A., Perugini, M., Franzini, C., Casagli, C., Borri, M.G., Antoni, G., Almoni, M., Neri, P., Ratti, G. and Rappuoli, R. 1986. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc. Nail. Acad. Sci. USA 83:4631–4635.

    Article  CAS  Google Scholar 

  3. Locht, C. and Keith, J.M. 1986. Pertussis toxin gene: nucleotide sequence and genetic organization. Science 232:11258–11264.

    Article  Google Scholar 

  4. Sato, Y., Kimura, M. and Fukumi, H. 1984. Development of a pertussis component vaccine in Japan. The Lancet i:122–126.

    Article  Google Scholar 

  5. Sato, H., Ito, A., Chiba, J. and Sato, Y. 1984. Monoclonal antibody against pertussis toxin: Effect on toxin activity and pertussis infections. Infect. Immun. 46:422–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sato, H., Sato, Y., Ito, A. and Ohishi, I. 1987. Effect of monoclonal antibody to pertussis toxin on toxin activity. Infect. Immun. 55:909–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicosia, A., Bartoloni, A., Perugini, M. and Rappuoli, R. 1987. Expression and immunological properties of the five subunits of pertussis toxin. Infect. Immun. 55:963–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Burnette, W.N. 1981. “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112:195–203.

    Article  CAS  Google Scholar 

  9. Zoller, M.J. and Smith, M. 1984. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3:479–488

    Article  CAS  Google Scholar 

  10. Perera, V.Y., Wardlow, A.C. and Freer, J.H. 1986. Antigenic heterogeneity in subunit S1 of pertussis toxin. J. Gen. Microbiol. 132:553–556.

    CAS  PubMed  Google Scholar 

  11. Anwar, H., Ashworth, L.A.E., Funnell, S., Robinson, A. and Irons, I. 1987. Neutralization of biological activities of pertussis toxin with a monoclonal antibody. FEMS Microbiology Letters 44:141–145.

    Article  CAS  Google Scholar 

  12. Aricò, B., Gross, R., Smida, J. and Rappuoli, R. 1987. Evolutionary relationships in the genus Bordetella. Molecular Microbiology 1(3):301–308.

    Article  Google Scholar 

  13. Amit, A.G., Mariuzza, R.A., Phillips, S.V.E. and Poljak, R.J. 1986. Three-dimensional structure of an antigen-antibody complex at 2.8 Å resolution. Science 233:747–753.

    Article  CAS  Google Scholar 

  14. Chothia, C., Lesk, A.M., Levitt, M., Amit, A.G., Mariuzza, R.A., Phillips, E.V. and Poljak, R.J. 1986. The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. Science 233:755–758.

    Article  CAS  Google Scholar 

  15. Burnens, A., Demotz, S., Corradini, G., Binz, H. and Bosshard, H.R. 1987. Epitope mapping by chemical modification of free and antibody-bound protein antigen. Science 235:780–783.

    Article  CAS  Google Scholar 

  16. Bigio, M., Rossi, R., Nucci, D., Borri, M.G., Antoni, G., Bartoloni, A. and Rappuoli, R. 1988. Monoclonal antibodies against pertussis toxin subunits. FEMS Microbiology Letters (in press).

    Article  CAS  Google Scholar 

  17. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular cloning, a Laboratory Manual. Cold Spring Harbor Laboratorv, Cold Spring Harbor, N.Y.

    Google Scholar 

  18. Mariani, M., Nucci, D., Bracci, L., Neri, P. and Antoni, G. 1986 Determination of antigen-specific immunoglobulin content in ascitic fluids and antisera. J. Immunol Methods 92:189–193.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartoloni, A., Pizza, M., Bigio, M. et al. Mapping of a Protective Epitope of Pertussis Toxin by In Vitro Refolding of Recombinant Fragments. Nat Biotechnol 6, 709–712 (1988). https://doi.org/10.1038/nbt0688-709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0688-709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing