Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Transposition Mediated Re–positioning and Subsequent Elimination of Marker Genes from Transgenic Tomato

Abstract

We describe a new plant transformation vector system which utilizes the transposition functions of the maize Ac/Ds transposable element family to re-position transgenes in transgenic crop plants. The practical applications of the system are two-fold. It allows the production of plants which exhibit a range of different stabilizable transgene expression levels following a single primary transformation event, and it allows for the elimination of specific transgene sequences—such as a selectable marker gene—subsequent to the transformation event. We have demonstrated the system using the NptII selectable marker gene and a Ds element containing the GUS reporter gene. Progeny plants were recovered from primary transformants from which either the NptII gene or the Ds/GUS element have been eliminated. We also show that the expression level of the GUS gene within both individual and amplified Ds elements can vary as a function of their position in the genome following transposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dean, C., Jones, J., Favreau, M., Dunsmuir, P. and Bedbrook, J. 1988. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucl. Acids Res. 16: 9267–9283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bryant, J. and Leather, S. 1992. removal of selectable marker genes from transgenic plants: needless sophistication or social necessity? TIBTECH 10: 274–275.

    Article  Google Scholar 

  3. Nap, J-P., Bijvoet, J. and Stiekema, W.J. 1992. Biosafety of kanamycin-resistant transgenic plants. Transgenic Research 1: 239–249.

    Article  CAS  PubMed  Google Scholar 

  4. Flavell, R.B., Dart, E., Fuchs, R.L. and Fraley, R.T. 1992. Selectable marker genes: Safe for plants? Bio/Technology 10: 141–144.

    CAS  Google Scholar 

  5. Gressel, J. 1992. Indiscriminate use of selectable markers—sowing wild oats? TIBTECH 10: 382.

    Article  Google Scholar 

  6. Dale, P.J. 1992. Spread of engineered genes to wild relatives. Plant Physiol. 100: 13–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell, S.H., Hoopes, J.L. and Odell, J.T. 1992. Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234: 49–59.

    CAS  PubMed  Google Scholar 

  8. Dale, E.C. and Ow, D.W. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Nat. Acad. Sci. USA 88: 10558–10562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKnight, T.D., Lillis, M.T. and Simpson, R.B. 1987. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol. Biol. 8: 439–445.

    Article  CAS  PubMed  Google Scholar 

  10. McClintock, B. 1948. Mutable loci in maize. Carnegie Inst. of Wash. Year Book 47: 155–169.

    Google Scholar 

  11. Fedoroff, N., Wessler, S. and Shure, M. 1983. Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 235–242.

    Article  CAS  PubMed  Google Scholar 

  12. Balcells, L., Swinburne, J. and Coupland, G. 1991. Transposons as tools for the isolation of plant genes. TIBTECH 9: 31–37.

    Article  Google Scholar 

  13. Lassner, M.W., Palys, J. and Yoder, J.I. 1989. Genetic transactivation of Dissociation elements in transgenic tomato plants. Mol. Gen. Genet. 218: 25–32.

    Article  CAS  Google Scholar 

  14. Scofield, S.R., Harrison, K., Nurrish, S.J. and Jones, J.D.G. 1992. Promoter fusions to the Activator transposase gene cause distinct patterns of Dissociation excision in tobacco cotyledons. Plant Cell 4: 573–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swinburne, J., Balcells, L., Scofield, S.R., Jones, J.D.G. and Coupland, G. 1992. Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation Excision in Arabidopsis. Plant Cell 4: 583–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Masterson, R.V., Furtek, D.B., Grevelding, C. and Schell, J. 1989. A maize Ds transposable element containing a didydrofolate reductase gene transposes in Nicotiana tabacum and Arabidopsis thaliana. Mol. Gen. Genet. 219: 461–466.

    Article  CAS  Google Scholar 

  17. Dooner, H.K., Keller, J., Harper, E. and Ralston, E. 1991. Variable patterns of transposition of the maize element Activator in tobacco. Plant Cell 3: 473–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Greenblatt, I. 1984. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element Modulator in maize. Genetics 108: 471–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones, J.D.G., Carland, F., Lim, E., Ralston, E. and Dooner, H.K. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Belzile, F., Lassner, M.W., Tong, Y., Khush, R. and Yoder, J.I. 1989. Sexual transmission of transposed Activator elements in transgenic tomatoes. Genetics 123: 181–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goldsbrough, A. and Bevan, M. 1991. New patterns of gene activity in plants detected using an Agrobacterium vector. Plant Mol. Biol. 16: 263–269.

    Article  CAS  PubMed  Google Scholar 

  22. Yoder, J.I. 1990. Rapid proliferation of the maize transposable element Activator in transgenic tomato. Plant Cell 2: 723–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marion-Poll, A., Marin, E., Bonnefoy, N. and Pautot, V., 1993. Tranposition of the maize autonomous element Activator in transgenic Nicotiana plumbaginifolia plants. Mol. Gen. Genet. 238: 209–217.

    CAS  PubMed  Google Scholar 

  24. Hardeman, K.J. and Chandler, V.L. 1989. Characterization of bzl mutants isolated from mutator stocks with high and low numbers of Mul elements. Developmental Genet. 10: 460–472.

    Article  CAS  Google Scholar 

  25. Topping, J.F., Wei, W. and Lindsay, K. 1991. Functional tagging of regulatory elements in the plant genome. Development 112: 1009–1019.

    CAS  PubMed  Google Scholar 

  26. Bevan, M.W. 1984. Agrobacterium vectors for plant transformation. Nucl. Acid Res. 12: 8711–8721.

    Article  CAS  Google Scholar 

  27. Thomas, C.M., Meyer, R. and Helinski, D.R. 1980. Regions of broad-host-range plasmid RK2 which are essential for replication and maintenance. J. Bacteriol. 141: 213–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirsch, P.R., Wang, C.L. and Woodland, M.J. 1986. Construction of a Tn5 derivative determining resistance to gentamycin and spectinomycin using a fragment cloned from R1033. Gene 48: 203–209.

    Article  CAS  PubMed  Google Scholar 

  29. Peralta, E.G., Hellmiss, R. and Dean, W. 1986. Overdrive, a T-DNA transmission enhancer on the A. tumefaciens tumour-inducing plasmid. EMBO. J. 5: 1137–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones, J.D.G., Shlumukov, L., Carand, F., English, J., Scofield, S.R., Bishop, G.J. and Harrison, K. 1992. Effective vectors for transformation, expression of heterologous genes, and assaying exision in transgenic plants. Transgenic Research 1: 285–297.

    Article  CAS  PubMed  Google Scholar 

  31. Yoder, J.I., Palys, J., Alpert, K. and Lassner, M. 1988. Ac transposition in transgenic tomato plants. Mol. Gen. Genet. 213: 291–296.

    Article  CAS  Google Scholar 

  32. Jefferson, R.A., Goldsbrough, A. and Bevan, M.W. 1990. Transcriptional regulation of a patatin-1 gene in potato. Plant Mol. Biol. 14: 995–1006.

    Article  CAS  PubMed  Google Scholar 

  33. Cooley, M.B., D'Souza, M. and Kado, C.I. 1991. The VirC and VirD operons of the Agrobacterium Ti Plasmid are regulated by the ros chromosomal gene: Analysis of the cloned ros gene. J. Bacteriol. 173: 2608–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  35. Bernatzky, R. and Tanksley, S.D. 1986. Genetics of actin-related sequences in tomato. Theor. Appl. Genet. 72: 314–321.

    Article  CAS  PubMed  Google Scholar 

  36. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  37. Jefferson, R.A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsbrough, A., Lastrella, C. & Yoder, J. Transposition Mediated Re–positioning and Subsequent Elimination of Marker Genes from Transgenic Tomato. Nat Biotechnol 11, 1286–1292 (1993). https://doi.org/10.1038/nbt1193-1286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1193-1286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing