Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Molecular mechanisms of biocatalytic desulfurization of fossil fuels

Abstract

The development of biocatalytic desulfurization of petroleum fractions may allow its use in place of conventional hydrodesulfurization (HDS). Dibenzothiophene (DBT) is representative of a broad range of sulfur heterocycles found in petroleum that are recalcitrant to desulfurization via HDS. Rhodococcus sp. strain IGTS8 has the ability to convert DBT to 2-hydroxybiphenyl (HBP) with the release of inorganic sulfur. The conversion of DBT to HBP is catalyzed by a multienzyme pathway consisting of two mono-oxygenases and a desulfinase. The final reaction catalyzed by the desulfinase appears to be the rate limiting step in the pathway. Each of the enzymes has been purified to homogeneity and their kinetic and physical properties studied. Neither monooxygenase has a tightly bound cofactor and each requires an NADH-FMN oxidoreductase for activity. An NADH-FMN oxidoreductase has been purified from Rhodococcus and is a protein of approximately 25,000 molecular weight with no apparent sequence homology to any other protein in the databases. We describe a unique sulfur acquisition system that Rhodococcus uses to obtain sulfur from very stable heterocyclic molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Monticello, D.J. 1993. Biocatalytic desulfurization of petroleum and middle distillates. Environmental Progress 12: 1–4.

    Article  CAS  Google Scholar 

  2. Monticello, D.J. 1994. Biocatalytic desulfurization, The biorefining of petroleum factors. Hydrocarbon Processing 2: 39–45.

    Google Scholar 

  3. Monticello, D.J. and Finnerty, W.R. 1985. Microbial desulfurization of fossil fuels. Ann. Rev. Microbiol. 39: 371–389.

    Article  CAS  Google Scholar 

  4. Nelson, W.L. 1969. In Petroleum Refinery Engineering. 4th Edition. McGraw Hill, New York.

    Google Scholar 

  5. Kilbane, J.J. and Jackowski, K. 1992. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol. Bioeng. 40: 1107–1114.

    Article  CAS  Google Scholar 

  6. Gallagher, J.R., Olson, E.S. and Stanley, D.C. 1993. Microbial desulfurization of dibenzothiophene: A sulfur-specific pathway. FEMS Microbiol. Lett. 107: 31–36.

    Article  CAS  Google Scholar 

  7. Omori, T., Monna, L., Saiki, Y. and Kodama, T. 1992. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Environ. Microbiol. 58: 911–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Olson, E.S., Stanley, D.C., Sharma, R.K. and Gallagher, JR. 1994. Microbial Desulfurization Mechanisms. PREPRINTS, Div. of Fuel Chem., ACS 39: 738–740.

    CAS  Google Scholar 

  9. Denome, S.A., Olson, E.S. and Young, K.D. 1993. Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 59: 2837–2843.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Denome, S.A., Oldfield, C., Nash, L.J. and Young, K.D. 1994. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol. 176: 6707–6716.

    Article  CAS  Google Scholar 

  11. Piddington, C.S., Kovacevich, B.R. and Rambosek, J.R. 1995. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61: 468–475.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Blanc, V., Lagneaux, D., Dider, P., Gil, P., Lacroix, P. and Crouzet, J. 1995. Cloning and analysis of structural genes from Streptomyces pristinaespiralis encoding enzymes involved in the conversion of Pristinamycin IIB to Pristinamycin IIA (PIIA): PIIA synthase and NADH: Riboflavin 5′-phosphate oxdoreductase. J. Bacteriol. 177: 5206–5214.

    Article  CAS  Google Scholar 

  13. Xu, Y., Mortimer, M., Kahn, M., Brockman, F. and Xun, L. 1995. Cloning and sequencing of the gene for NTA monoxygenase from Chelotobacter heintzii . Abstracts of the 95th General Meeting of the American Society for Microbiology. Session 202, Q-281.

  14. Ohshiro, T., Hine, Y. and Izumi, Y. 1994. Enzymatic desulfurization of dibenzo-thiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol. Lett. 118: 341–344.

    Article  CAS  Google Scholar 

  15. Ohshiro, T., Kanbayashi, Y., Hine, Y. and Izumi, Y. 1995. Involvement of flavin coenzyme in dibenzothiophene degrading enzyme system from Rhodococcus erythropolis D-1. Biosci. Biotech. Biochem. 59: 1349–1351.

    Article  CAS  Google Scholar 

  16. Hastings, J.W., Portrikus, C.J., Gupta, S.C., Kurfurst, M. and Makemson, J.C. 1985. Biochemistry and physiology of bioluminescent bacteria. Adv. Microb. Physiol. 26: 235–291.

    Article  CAS  Google Scholar 

  17. Meighen, E.A. 1988. Enzymes and genes from the lux operons of bioluminescent bacteria. Ann. Rev. Microbiol. 42: 151–176.

    Article  CAS  Google Scholar 

  18. Fontecave, M., Eliasson, R. and Reichard, P. 1987. NAD(P)H: flavin oxidore-ductase of Escherchia coli . A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J. Biol. Chem. 262: 12325–12331.

    CAS  PubMed  Google Scholar 

  19. Reichard, P. 1988. Interactions between deoxyribonucleotide and DNA synthesis. Ann. Rev. Biochem. 57: 349–374.

    Article  CAS  Google Scholar 

  20. Kendrew, S.G., Harding, S.E., Hopwood, D.A. and Marsh, E.N.G. 1995. Identification of a flavin: NADH oxidoreductase involved in the biosynthesis of actinorhodin. J. Biol. Chem. 270: 17339–17343.

    Article  CAS  Google Scholar 

  21. Thibaut, D., Ratet, N., Bisch, D., Faucher, D., Debussche, L. and Blanche, F. 1995. Purification of the two enzyme system catalyzing the oxidation of the D-proline residue of pristinamycin IIB during the last step of pristinamycin IIA biosynthesis. J. Bacteriol. 177: 5199–5205.

    Article  CAS  Google Scholar 

  22. Holland, H.L. 1988. Chiral sulfoxidation by biotransformation of organic sulfides. Chem. Rev. 88: 473–485.

    Article  CAS  Google Scholar 

  23. Light, D.R., Waxman, D.J. and Walsh, C. 1982. Studies on the chirality of sulfoxidation catalyzed by bacterial flavoenzyme cyclohexanone monooxygenase and hog liver flavin adenine dinucleotide containing monooxygenase. Biochemistry 21: 2490–2498.

    Article  CAS  Google Scholar 

  24. Lee, K., Brand, J.M. and Gibson, D.T. 1995. Stereospecific sulfoxidation by toluene and naphthalene dioxygenases. Biochem. Biophys. Res. Comm. 212: 9–15.

    Article  CAS  Google Scholar 

  25. Duggleby, R.G. 1995. Analysis of enzyme progress curves by nonlinear regression. Methods Enzymol. 249: 61–90.

    Article  CAS  Google Scholar 

  26. Massey, V. 1994. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269: 22549–22462.

    Google Scholar 

  27. Kemal, C., Chan, T.W. and Bruice, T.C. 1977. Reaction of 3O2 with dihydroflavins. 1. N3,5-dimethyl-1,5-dihydrolumiflavin and 1,5-dihydroisoalloxazines. J. Am. Chem. Soc. 99: 7272–7286.

    Article  CAS  Google Scholar 

  28. Mason, J.R. and Cammack, R. 1992. The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 46: 277–305.

    Article  CAS  Google Scholar 

  29. Harayama, S., Kok, M. and Neidle, E.L. 1992. Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol. 46: 565–601.

    Article  CAS  Google Scholar 

  30. Batie, C.J., Ballou, D.P. and Correll, C.C. 1992. Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases. pp. 543–556 in Chemistry and Biochemistry of Flavoproteins, Müller, F. (ed.). CRC Press, Boca Raton, FL.

    Google Scholar 

  31. Miles, E. and Meister, A. 1967. The mechanism of the reaction of ß-hydroxyaspartate with L-aspartate ß-decarboxylase. A new type of pyridoxal 5′-phosphate-enzyme inhibition. Biochemistry 6: 1734–1743.

    Article  CAS  Google Scholar 

  32. Finnerty, W.R. 1992. The biology and genetics of the genus Rhodococcus . Annu. Rev. Microbiol. 46: 193–218.

    Article  CAS  Google Scholar 

  33. Warhurst, A.M. and Fewson, C.A. 1994. Biotransformations catalyzed by the genus Rhodococcus. Crit. Rev. Biotechnol. 14: 29–73.

    Article  CAS  Google Scholar 

  34. Li, M.Z., Squires, C.H., Monticello, D.J. and Childs, J.D. 1996. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis strain IGTS8. J. Bacteriol. In press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, K., Pogrebinsky, O., Mrachko, G. et al. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14, 1705–1709 (1996). https://doi.org/10.1038/nbt1296-1705

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1296-1705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing