Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of c-myc expression by PDGF through Rho GTPases

Abstract

Src family protein-tyrosine kinases have a central role in several biological functions, including cell adhesion and spreading, chemotaxis, cell cycle progression, differentiation and apoptosis. Surprisingly, these kinases also participate in mitogenic signalling by receptors that themselves exhibit an intrinsic protein-tyrosine kinase activity, inclu-ding those for platelet-derived growth factor (PDGF), epidermal growth factor and colony-stimulating factor-1. Indeed, Src kinases are strictly required for the nuclear expression of the c-myc proto-oncogene and thus for DNA synthesis in response to PDGF. However, the nature of the signalling pathways by which Src kinases participate in the induction of c-myc expression by tyrosine kinase receptors is still unknown. Here we show that PDGF enhances c-myc expression and stimulates the c-myc promoter in a Src-dependent manner, and that neither Ras nor the mitogen-activated protein kinase pathway mediate these effects. In contrast, we present evidence that PDGF stimulates Vav2 through Src, thereby initiating the activation of a Rac-dependent pathway that controls the expression of the c-myc proto-oncogene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PDGF stimulation of c-myc expression is dependent on the activity of Src-related kinases.
Figure 2: Stimulation of the myc promoter by the PDGF-receptor–Src pathway is independent of Ras–MAPK activation.
Figure 3: Rho GTPases participate in the Src-dependent activation of the c-myc promoter.
Figure 4: Role of Vav2 in the Src-dependent activation of the c-myc promoter by PDGF.
Figure 5

Similar content being viewed by others

References

  1. Brugge, J. S. & Erikson, R. L. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269, 346–348 (1977).

    Article  CAS  Google Scholar 

  2. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell. Dev. Biol. 13, 513–609 (1997).

    Article  CAS  Google Scholar 

  3. Kypta, R. M., Goldberg, Y., Ulug, E. T. & Courtneidge, S. A. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62, 481–492 (1990).

    Article  CAS  Google Scholar 

  4. Twamley, G. M., Kypta, R. M., Hall, B. & Courtneidge, S. A. Association of Fyn with the activated platelet-derived growth factor receptor: requirements for binding and phosphorylation. Oncogene 7, 1893–1901 (1992).

    CAS  PubMed  Google Scholar 

  5. Twamley-Stein, G. M., Pepperkok, R., Ansorge, W. & Courtneidge, S. A. The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc. Natl Acad. Sci. USA 90, 7696–7700 (1993).

    Article  CAS  Google Scholar 

  6. Broome, M. A. & Hunter, T. Requirement for c-Src catalytic activity and the SH3 domain in platelet-derived growth factor BB and epidermal growth factor mitogenic signaling. J. Biol. Chem. 271, 16798–16806 (1996).

    Article  CAS  Google Scholar 

  7. Blake, R. A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell. Biol. 20, 9018–9027 (2000).

    Article  CAS  Google Scholar 

  8. Barone, M. V. & Courtneidge, S. A. Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src. Nature 378, 509–512 (1995).

    Article  CAS  Google Scholar 

  9. Abram, C. L. & Courtneidge, S. A. Src family tyrosine kinases and growth factor signaling. Exp. Cell Res. 254, 1–13 (2000).

    Article  CAS  Google Scholar 

  10. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    Article  CAS  Google Scholar 

  11. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  Google Scholar 

  12. Mackay, D. J. & Hall, A. Rho GTPases. J. Biol. Chem. 273, 20685–20688 (1998).

    Article  CAS  Google Scholar 

  13. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  14. Hanke, J. H. et al. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  Google Scholar 

  15. Blake, R. A., Garcia-Paramio, P., Parker, P. J. & Courtneidge, S. A. Src promotes PKCδ degradation. Cell Growth Differ. 10, 231–241 (1999).

    CAS  PubMed  Google Scholar 

  16. Waltenberger, J. et al. A dual inhibitor of platelet-derived growth factor beta-receptor and Src kinase activity potently interferes with motogenic and mitogenic responses to PDGF in vascular smooth muscle cells. A novel candidate for prevention of vascular remodeling. Circ. Res. 85, 12–22 (1999).

    Article  CAS  Google Scholar 

  17. Kiuchi, N. et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J. Exp. Med. 189, 63–73 (1999).

    Article  CAS  Google Scholar 

  18. Zou, X., Rudchenko, S., Wong, K. & Calame, K. Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Raf1, and cyclin-dependent kinases. Genes Dev. 11, 654–662 (1997).

    Article  CAS  Google Scholar 

  19. Eliceiri, B. P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  Google Scholar 

  20. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  21. Downward, J. Cell cycle: routine role for Ras. Curr. Biol. 7, R258–R260 (1997).

    Article  CAS  Google Scholar 

  22. Eisenman, R. N. & Cooper, J. A. Signal transduction. Beating a path to Myc. Nature 378, 438–439 (1995).

    Article  CAS  Google Scholar 

  23. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995).

    Article  CAS  Google Scholar 

  24. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 (1995).

    Article  CAS  Google Scholar 

  25. Fukuhara, S., Marinissen, M. J., Chiariello, M. & Gutkind, J. S. Signaling from G protein-coupled receptors to ERK5/Big MAPK 1 involves Gαq and Gα12/13 families of heterotrimeric G proteins. Evidence for the existence of a novel Ras and Rho-independent pathway. J. Biol. Chem. 275, 21730–21736 (2000).

    Article  CAS  Google Scholar 

  26. Aktories, K., Schmidt, G. & Just, I. Rho GTPases as targets of bacterial protein toxins. Biol. Chem. 381, 421–426 (2000).

    Article  CAS  Google Scholar 

  27. Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995).

    Article  CAS  Google Scholar 

  28. Schmidt, G. et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387, 725–729 (1997).

    Article  CAS  Google Scholar 

  29. Lerm, M. et al. Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells. Infect. Immun. 67, 496–503 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Whitehead, I. P., Campbell, S., Rossman, K. L. & Der, C. J. Dbl family proteins. Biochim. Biophys. Acta 1332, F1–F23 (1997).

    CAS  PubMed  Google Scholar 

  31. Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  32. Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S. & Bustelo, X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).

    Article  CAS  Google Scholar 

  33. Bustelo, X. R. Regulatory and signaling properties of the Vav family. Mol. Cell. Biol. 20, 1461–1477 (2000).

    Article  CAS  Google Scholar 

  34. Henske, E. P. et al. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1. Ann. Hum. Genet. 59, 25–37 (1995).

    Article  CAS  Google Scholar 

  35. Liu, B. P. & Burridge, K. Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not β1 integrins. Mol. Cell. Biol. 20, 7160–7169 (2000).

    Article  CAS  Google Scholar 

  36. Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  Google Scholar 

  37. Broome, M. A. & Courtneidge, S. A. No requirement for src family kinases for PDGF signaling in fibroblasts expressing SV40 large T antigen. Oncogene 19, 2867–2869 (2000).

    Article  CAS  Google Scholar 

  38. Kerkhoff, E. et al. Regulation of c-myc expression by Ras/Raf signalling. Oncogene 16, 211–216 (1998).

    Article  CAS  Google Scholar 

  39. Abe, K. et al. Vav2 is an activator of Cdc42, Rac1, and RhoA. J. Biol. Chem. 275, 10141–1049 (2000).

    Article  CAS  Google Scholar 

  40. Olson, M. F., Ashworth, A. & Hall, A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272 (1995).

    Article  CAS  Google Scholar 

  41. Coso, O. A. et al. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146 (1995).

    Article  CAS  Google Scholar 

  42. Wang, S., Nath, N., Minden, A. & Chellappan, S. Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases. EMBO J. 18, 1559–1570 (1999).

    Article  CAS  Google Scholar 

  43. Perona, R. et al. Activation of the nuclear factor-κB by Rho, CDC42, and Rac-1 proteins. Genes Dev. 11, 463–475 (1997).

    Article  CAS  Google Scholar 

  44. Decker, T. & Kovarik, P. Serine phosphorylation of STATs. Oncogene 19, 2628–2637 (2000).

    Article  CAS  Google Scholar 

  45. Kessler, D. J., Duyao, M. P., Spicer, D. B. & Sonenshein, G. E. NF-κB-like factors mediate interleukin 1 induction of c-myc gene transcription in fibroblasts. J. Exp. Med. 176, 787–792 (1992).

    Article  CAS  Google Scholar 

  46. Wong, K. K. et al. v-Abl activates c-myc transcription through the E2F site. Mol. Cell. Biol. 15, 6535–6544 (1995).

    Article  CAS  Google Scholar 

  47. Joyce, D. et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-κB-dependent pathway. J. Biol. Chem. 274, 25245–25249 (1999).

    Article  CAS  Google Scholar 

  48. Marinissen, M. J., Chiariello, M., Pallante, M. & Gutkind, J. S. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol. Cell. Biol. 19, 4289–4301 (1999).

    Article  CAS  Google Scholar 

  49. Sears, R. et al. Multiple ras-dependent phosphorylation pathways regulate myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  Google Scholar 

  50. Sears, R., Leone, G., DeGregori, J. & Nevins, J. R. Ras enhances Myc protein stability. Mol. Cell 3, 169–179 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Varmus, P. Schwartzberg, K. Aktories, R. Pestell, A. Aronheim and X. R. Bustelo for providing us with the pSM-Src YF and pSM-Src YFKM, CAIO-Src 251, pGEX2T-GST–CNF-1, pMyc-Luc, pRSV Sos myristoylated and Vav2 cDNAs, respectively; J. I. Lee for the gift of the anti-Vav2 antisera; and R. Visconti and S. Pece for many helpful discussions. M.C. was on leave from the Dipartimento di Biologia e Patologia Cellulare e Molecolare 'L. Califano', Università degli Studi di Napoli 'Federico II', via S. Pansini 5, 80131, Naples, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Silvio Gutkind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiariello, M., Marinissen, M. & Gutkind, J. Regulation of c-myc expression by PDGF through Rho GTPases. Nat Cell Biol 3, 580–586 (2001). https://doi.org/10.1038/35078555

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing