Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways

Abstract

Skeletal muscle is composed of multinucleated fibres, formed after the differentiation and fusion of myoblast precursors1. Skeletal muscle atrophy and hypertrophy refer to changes in the diameter of these pre-existing muscle fibres. The prevention of atrophy would provide an obvious clinical benefit; insulin-like growth factor 1 (IGF-1) is a promising anti-atrophy agent2,3,4,5 because of its ability to promote hypertrophy. However, the signalling pathways by which IGF-1 promotes hypertrophy remain unclear, with roles suggested for both the calcineurin/NFAT (nuclear factor of activated T cells) pathway6,7 and the PtdIns-3-OH kinase (PI(3)K)/Akt pathway8. Here we employ a battery of approaches to examine these pathways during the hypertrophic response of cultured myotubes to IGF-1. We report that Akt promotes hypertrophy by activating downstream signalling pathways previously implicated in activating protein synthesis: the pathways downstream of mammalian target of rapamycin (mTOR) and the pathway activated by phosphorylating and thereby inhibiting glycogen synthase kinase 3 (GSK3). In contrast, in addition to demonstrating that calcineurin does not mediate IGF-1-induced hypertrophy, we show that IGF-1 unexpectedly acts via Akt to antagonize calcineurin signalling during myotube hypertrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of a signalling network downstream of the growth factor IGF-1, emphasizing the primary role of the PI(3)K/Akt/mTOR cascade, linking receptor tyrosine kinase derived signals to growth regulatory mechanisms.
Figure 2: Signalling pathways activated by IGF-1 or the calcium ionophore A23187 (Ca-I) in C2C12 differentiated myotubes.
Figure 3: IGF-1 induces skeletal myotube hypertrophy via the PI(3)K/Akt/mTOR kinase cascade, independently of calcineurin activity.
Figure 4: Direct or indirect Akt activation results in p70S6 kinase activation.

Similar content being viewed by others

References

  1. Engel, A. G. & Fanzine-Armstrong, C. Myology 1937 (McGraw-Hill, New York, 1994).

    Google Scholar 

  2. Renganathan, M., Messi, M. L., Schwartz, R. & Delbono, O. FEBS Lett. 417, 13–16 (1997).

    Article  CAS  Google Scholar 

  3. Adams, G. R. & Haddad, F. J. Appl. Physiol. 81, 2509–2516 (1996).

    Article  CAS  Google Scholar 

  4. Goldspink, G. J. Anat. 194, 323–334 (1999).

    Article  CAS  Google Scholar 

  5. Florini, J. R., Ewton, D. Z. & Coolican, S. A. Endocr. Rev. 17, 481–517 (1996).

    CAS  PubMed  Google Scholar 

  6. Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N. & Rosenthal, N. Nature 400, 581–585 (1999).

    Article  CAS  Google Scholar 

  7. Semsarian, C., Sutrave, P., Richmond, D. R. & Graham, R. M. Biochem. J. 339, 443–451 (1999).

    Article  CAS  Google Scholar 

  8. Rommel, C. et al. Science 286, 1738–1741 (1999).

    Article  CAS  Google Scholar 

  9. Friday, B. B., Horsley, V. & Pavlath, G. K. J. Cell Biol. 149, 657–666 (2000).

    Article  CAS  Google Scholar 

  10. Dudek, H. et al. Science 275, 661–665 (1997).

    Article  CAS  Google Scholar 

  11. Svegliati-Baroni, G. et al. Hepatology 29, 1743–1751 (1999).

    Article  CAS  Google Scholar 

  12. Yu, H. & Berkel, H. J. LA State Med. Soc. 151, 218–223 (1999).

    CAS  PubMed  Google Scholar 

  13. Olson, E. N. & Williams, R. S. Cell 101, 689–692 (2000).

    Article  CAS  Google Scholar 

  14. Wesselborg, S., Fruman, D. A., Sagoo, J. K., Bierer, B. E. & Burakoff, S. J. J. Biol. Chem. 271, 1274–1277 (1996).

    Article  CAS  Google Scholar 

  15. Eves, E. M. et al. Mol. Cell. Biol. 18, 2143–2152 (1998).

    Article  CAS  Google Scholar 

  16. Aman, M. J., Lamkin, T. D., Okada, H., Kurosaki, T. & Ravichandran, K. S. J. Biol. Chem. 273, 33922–33928 (1998).

    Article  CAS  Google Scholar 

  17. Carver, D. J., Aman, M. J. & Ravichandran, K. S. Blood 96, 1449–1456 (2000).

    CAS  PubMed  Google Scholar 

  18. Liu, Q. et al. Genes Dev. 13, 786–791 (1999).

    Article  CAS  Google Scholar 

  19. Jacob, A., Cooney, D., Tridandapani, S., Kelley, T. & Coggeshall, K. M. J. Biol. Chem. 274, 13704–13710 (1999).

    Article  CAS  Google Scholar 

  20. Bohni, R. et al. Cell 97, 865–875 (1999).

    Article  CAS  Google Scholar 

  21. Huang, H. et al. Development 126, 5365–5372 (1999).

    CAS  PubMed  Google Scholar 

  22. Leevers, S. J., Weinkove, D., MacDougall, L. K., Hafen, E. & Waterfield, M. D. EMBO J. 15, 6584–6594 (1996).

    Article  CAS  Google Scholar 

  23. Montagne, J. et al. Science 285, 2126–2129 (1999).

    Article  CAS  Google Scholar 

  24. Bodine, S. C. et al. Nature Cell Biol. 3, 1014–1019 (2001).

    Article  CAS  Google Scholar 

  25. Glass, D. J. et al. Cold Spring Harb. Symp. Quant. Biol. 57, 53–62 (1992).

    Article  CAS  Google Scholar 

  26. Azpiazu, I., Saltiel, A. R., DePaoli-Roach, A. A. & Lawrence, J. C. J. Biol. Chem. 271, 5033–5039 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. S. Schleifer and P. R. Vagelos for enthusiastic support, along with the rest of the Regeneron community; T. Salomon and J. McCormick for expert assistance with the FACS; S. Staton and E. Burrows for graphics work; A. Bellacosa, P. Tsichlis and J. Blenis for providing reagents and advice; J. Wodgett for the dominant negative GSK3β; and E. Hafen for sharing results before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Glass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommel, C., Bodine, S., Clarke, B. et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3, 1009–1013 (2001). https://doi.org/10.1038/ncb1101-1009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-1009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing