Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping the dynamic organization of the nuclear pore complex inside single living cells

Abstract

Most cellular activities are executed by multi-protein complexes that form the basic functional modules of their molecular machinery1. Proteomic approaches can provide an evermore detailed picture of their composition, but do not reveal how these machines are organized dynamically to accomplish their biological function. Here, we present a method to determine the dissociation rates of protein subunits from complexes that have a traceable localization inside single living cells. As a case study, we systematically analysed the dynamic organization of vertebrate nuclear pore complexes (NPCs), large supramolecular complexes of about 30 different polypeptides2. NPC components exhibited a wide range of residence times covering five orders of magnitude from seconds to days. We found the central parts of the NPC to be very stable, consistent with a function as a structural scaffold, whereas more peripheral components exhibited more dynamic behaviour, suggesting adaptor as well as regulatory functions. The presented strategy can be applied to many multi-protein complexes and will help to characterize the dynamic behaviour of complex networks of proteins in live cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stable cell lines expressing GFP-tagged nucleoporins.
Figure 2: Expression levels of the GFP-tagged nucleoporins.
Figure 3: Nucleoporin dynamics at nuclear pore complexes.
Figure 4: Kinetic modelling.
Figure 5: Map of the dynamic organization of the nuclear pore complex.

Similar content being viewed by others

References

  1. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Daigle, N. et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154, 71–84 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Enninga, J., Levay, A. & Fontoura, B. M. Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol. Cell. Biol. 23, 7271–7284 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakielny, S., Shaikh, S., Burke, B. & Dreyfuss, G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J. 18, 1982–1995 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Griffis, E. R., Altan, N., Lippincott-Schwartz, J. & Powers, M. A. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol. Biol. Cell 13, 1282–1297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zolotukhin, A. S. & Felber, B. K. Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J. Virol. 73, 120–127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dilworth, D. J. et al. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J. Cell Biol. 153, 1465–1478 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lindsay, M. E., Plafker, K., Smith, A. E., Clurman, B. E. & Macara, I. G. Npap60/Nup50 is a tri-stable switch that stimulates importin-alpha:beta-mediated nuclear protein import. Cell 110, 349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Denning, D. et al. The nucleoporin Nup60p functions as a Gsp1p–GTP-sensitive tether for Nup2p at the nuclear pore complex. J. Cell Biol. 154, 937–950 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guan, T. et al. Nup50, a nucleoplasmically oriented nucleoporin with a role in nuclear protein export. Mol. Cell. Biol. 20, 5619–5630 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bodoor, K. et al. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J. Cell Sci. 112, 2253–2264 (1999).

    CAS  PubMed  Google Scholar 

  15. Dundr, M., McNally, J. G., Cohen, J. & Misteli, T. Quantitation of GFP-fusion proteins in single living cells. J. Struct. Biol. 140, 92–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298, 1623–1626 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Loiodice, I. et al. The entire nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell 15, 3333–3344 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Walther, T. C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158, 63–77 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cronshaw, J. M. & Matunis, M. J. The nuclear pore complex protein ALADIN is mislocalized in triple A syndrome. Proc. Natl Acad. Sci. USA 100, 5823–5827 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drummond, S. P. & Wilson, K. L. Interference with the cytoplasmic tail of gp210 disrupts “close apposition” of nuclear membranes and blocks nuclear pore dilation. J. Cell Biol. 158, 53–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olsson, M., Scheele, S. & Ekblom, P. Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp. Cell Res. 292, 359–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Galy, V., Mattaj, I. W. & Askjaer, P. Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol. Biol. Cell 14, 5104–5115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Griffis, E. R., Craige, B., Dimaano, C., Ullman, K. S. & Powers, M. A. Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility. Mol. Biol. Cell 15, 1991–2002 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, A. E., Slepchenko, B. M., Schaff, J. C., Loew, L. M. & Macara, I. G. Systems analysis of Ran transport. Science 295, 488–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carrero, G., McDonald, D., Crawford, E., de Vries, G. & Hendzel, M. J. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29, 14–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Janin, J. in Protein–Protein Recognition (ed. Kleanthous, C.) 1–32 (Oxford University Press, New York, 2000).

    Google Scholar 

  31. Rabut, G. & Ellenberg, J. J. Microsc. Automatic real-time 3D cell tracking by fluorescence microscopy. 216, 131–137 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Izaurralde for CG1, Nup93, Nup98 and importin β cDNAs; B. Glick for pBK-SEC13–GFP; D. Görlich for Nup50 and Nup58 cDNAs; M. Fornerod for pBS-KS(-)CAN; R. Wozniak for the gp210 cDNA; J. Hanover for the Nup62 cDNA; J. Cohen for GFP–VLPs; I. Loïodice for EGFP–Seh1; M. Van Overbeek for EGFP–Nup85; J. Cronshaw and M. Matunis for EGFP–Nup37, EGFP–Nup43, EGFP–Nup35 and EGFP–Aladin; E. Hallberg for the anti-Pom121 antibody; I. Mattaj, E. Izaurralde and the members of the Ellenberg lab for critical reading of the manuscript; and J.C. Courvalin for stimulating discussions. J.E. acknowledges support from the German Research Council (DFG, EL 246/1-1) and the Human Frontiers Science Program (RGP0031/2001-M). V.D. is funded by the Institut Curie, the Centre National de la Recherche Scientifique, the Association pour la Recherche contre le Cancer, and la Ligue Contre le Cancer (Comité de Paris).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ellenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Movie S1 (MOV 2677 kb)

Supplementary Information, Figures

Supplementary Information, Fig. S1, Fig. S2, Fig. S3, Fig. S4 and Supplementary Methods (PDF 818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabut, G., Doye, V. & Ellenberg, J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6, 1114–1121 (2004). https://doi.org/10.1038/ncb1184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing