Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

OsHAL3 mediates a new pathway in the light-regulated growth of rice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The enhanced growth rate enabled by OsHAL3 overexpression is regulated by light.
Figure 2: Light-mediated OsHAL3 trimer dissociation.
Figure 3: Expression pattern of OsHAL3.
Figure 4: OsHAL3 function in growth regulation may involve ubiquitin-dependent proteolysis but independent from its PPC decarboxylase activity.

Accession codes

Accessions

GenBank/EMBL/DDBJ

NCBI Reference Sequence

References

  1. Arnim, A. & Deng, X. W. Light control of seedling development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 215–243 (1996).

    Article  Google Scholar 

  2. Lin, C. & Shalitin, D. Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54, 469–496 (2003).

    Article  CAS  Google Scholar 

  3. Rockwell, N. C., Su, Y. S. & Lagarias, J. C. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858 (2006).

    Article  CAS  Google Scholar 

  4. Lau, O. S. & Deng, X. W. Light-regulated transcriptional networks in higher plants. Nature Rev. Genet. 8, 217–230 (2007).

    Article  Google Scholar 

  5. Di Como, C. J., Bose, R. & Arndt, K. T. Overexpression of SIS2, which contains an extremely acidic region, increases the expression of SWI4, CLN1 and CLN2 in sit4 mutants. Genetics 139, 95–107 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrando, A., Kron, S. J., Rios, G., Fink, G. R. & Serrano, R. Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol. Cell Biol. 15, 5470–5481 (1995).

    Article  CAS  Google Scholar 

  7. Rodriguez, P. L., Ali, R. & Serrano R. CtCdc55p and CtHa13p: two putative regulatory proteins from Candida tropicalis with long acidic domains. Yeast 12, 1321–1329 (1996).

    Article  CAS  Google Scholar 

  8. Espinosa-Ruiz, A., Belles, J. M., Serrano, R. & Culianez-MacIa, F. A. Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J. 20, 529–539 (1999).

    Article  CAS  Google Scholar 

  9. Kupke, T., Hernández-Acosta, P. & Culiáñez-Macià, F. A. 4′-phosphopantetheine and coenzyme A biosynthesis in plants. J. Biol. Chem. 278, 38229–38237 (2003).

    Article  CAS  Google Scholar 

  10. Yonamine, I. et al. Overexpression of NtHAL3 genes confers increased levels of proline biosynthesis and the enhancement of salt tolerance in cultured tobacco cells. J. Exp. Bot. 55, 387–395 (2004).

    Article  CAS  Google Scholar 

  11. Zhang, N., Wang, X. & Chen, J. Role of OsHAL3 protein, a putative 4′-phosphopantothenoylcysteine decarboxylase in rice. Biochemistry 74, 61–67 (2009).

    CAS  PubMed  Google Scholar 

  12. Rios, G., Ferrando, A. & Serrano, R. Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13, 515–528 (1997).

    Article  CAS  Google Scholar 

  13. Clotet, J., Gari, E., Aldea, M. & Arino, J. The yeast ser/thr phosphatases sit4 and ppz1 play opposite roles in regulation of the cell cycle. Mol, Cell Biol, 19, 2408–2415 (1999).

    Article  CAS  Google Scholar 

  14. Mulet, J. M., Ariño, J. & Serrano, R. The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J. 21, 920–929 (2002).

    Article  Google Scholar 

  15. Albert, A. et al. The X-ray structure of the FMN-binding protein AtHal3 provides the structural basis for the activity of a regulatory subunit involved in signal transduction. Structure 8, 961–969 (2000).

    Article  CAS  Google Scholar 

  16. Lin, C. et al. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269, 968–970 (1995).

    Article  CAS  Google Scholar 

  17. Sang, Y. et al. N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis Cryptochrome 1. Plant Cell 17, 1569–1584 (2005).

    Article  CAS  Google Scholar 

  18. Hernandez-Acosta, P., Schmid, D. G., Jung, G., Culianez-Macia, F. A. & Kupke, T. Molecular characterization of the Arabidopsis thaliana flavoprotein AtHAL3a reveals the general reaction mechanism of 4′-phosphopantothenoylcysteine decarboxylases. J. Biol. Chem. 277, 20490–20498 (2002).

    Article  CAS  Google Scholar 

  19. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. & Gruissem, W. GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiol. 136, 2621–2632 (2004).

    Article  CAS  Google Scholar 

  20. Baerenfaller, K. et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938–941 (2008).

    Article  CAS  Google Scholar 

  21. Rubio, S. et al. An Arabidopsis mutant impaired in coenzyme A biosynthesis is sugar dependent for seedling establishment. Plant Physiol. 140, 830-843 (2006).

    Article  CAS  Google Scholar 

  22. de Nadal, E. et al. The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc. Natl. Acad. Sci. USA 95, 7357–7362 (1998).

    Article  CAS  Google Scholar 

  23. Kupke, T., Hernandez-Acosta, P., Steinbacher, S. & Culianez-Macia, F. A. Arabidopsis thaliana flavoprotein AtHAL3a catalyzes the decarboxylation of 4′-Phosphopantothenoylcysteine to 4′-phosphopantetheine, a key step in coenzyme A biosynthesis. J. Biol.Chem. 276, 19190–19196 (2001).

    Article  CAS  Google Scholar 

  24. Steinbacher, S. et al. Crystal structure of the plant PPC decarboxylase AtHAL3a complexed with an ene-thiol reaction intermediate. J. Mol. Biol. 327, 193–202 (2003).

    Article  CAS  Google Scholar 

  25. Munoz, I. et al. Functional characterization of the yeast Ppz1 phosphatase inhibitory subunit Hal3: a mutagenesis study. J. Biol. Chem. 279, 42619–42627 (2004).

    Article  CAS  Google Scholar 

  26. Ruiz, A. et al. Functional characterization of the Saccharomyces cerevisiae VHS3 gene: a regulatory subunit of the Ppz1 protein phosphatase with novel, phosphatase-unrelated functions. J. Biol. Chem. 279, 34421–34430 (2004).

    Article  CAS  Google Scholar 

  27. Muñoz, I. et al. Functional characterization of the yeast Ppz1 phosphatase inhibitory subunit Hal3: a mutagenesis study. J. Biol. Chem. 279, 42619–42627 (2004).

    Article  Google Scholar 

  28. Mao, J., Zhang, Y. C., Sang, Y., Li, Q. H. & Yang, H. Q. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. USA 102, 12270–12275 (2005).

    Article  CAS  Google Scholar 

  29. Osterlund, M. T., Hardtke, C. S., Wei, N. & Deng, X. W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466 (2000).

    Article  CAS  Google Scholar 

  30. Karsai, A., Muller, S., Platz, S. & Hauser, M. T. Evaluation of a homemade SYBR green I reaction mixture for real-time PCR quantification of gene expression. Biotechniques 32, 790–796 (2002).

    Article  CAS  Google Scholar 

  31. Hiei, Y. et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271–282 (1994).

    Article  CAS  Google Scholar 

  32. Lagarde, D. et al. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J 9, 195–203 (1996).

    Article  CAS  Google Scholar 

  33. Mei, C., Zhou, X. & Yang, Y. Use of RNA interference to dissect defense signaling pathways in rice plants. In Methods in Molecular Biology: Plant-Pathogen Interactions Vol. 354, (Ed. P. Ronald) 161–171 (Humana Press, 2007).

    Google Scholar 

Download references

Acknowledgements

We thank Q..-H. Yao for providing a rice cDNA library and T. G. Sors for revising the manuscript. This work was supported by grants from the Ministry of Science and Technology of China (2006CB100100 and 2006AA10A102), the Chinese Academy of Sciences (KSCX2-YW-N-011), the National Natural Science Foundation of China (30730058 and 30821004), the Ministry of Agriculture of China (2009EX08009-0678) and the Shanghai Science and Technology Development Fund.

Author information

Authors and Affiliations

Authors

Contributions

H.X.L., D.Y.C and S.Y.S. designed the experiments; H.Q.Y. designed some experiments; S.Y.S. and D.Y.C. performed most of the experiments; H.X.L., X.M.L., S.M., J.P.G. and M.Z.Z. performed some of the experiments; H.X.L. conceived and supervised the work and D.Y.C, H.X.L. and S. L. wrote the manuscript.

Corresponding author

Correspondence to Hong-Xuan Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1158 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, SY., Chao, DY., Li, XM. et al. OsHAL3 mediates a new pathway in the light-regulated growth of rice. Nat Cell Biol 11, 845–851 (2009). https://doi.org/10.1038/ncb1892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1892

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing