Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytoskeletal keratin glycosylation protects epithelial tissue from injury

Abstract

Keratins 8 and 18 (K8 and K18) are heteropolymeric intermediate filament phosphoglycoproteins of simple-type epithelia. Mutations in K8 and K18 predispose the affected individual to liver disease as they protect hepatocytes from apoptosis. K18 undergoes dynamic O-linked N-acetylglucosamine glycosylation at Ser 30, 31 and 49. We investigated the function of K18 glycosylation by generating mice that overexpress human K18 S30/31/49A substitution mutants that cannot be glycosylated (K18–Gly), and compared the susceptibility of these mice to injury with wild-type and other keratin-mutant mice. K18–Gly mice are more susceptible to liver and pancreatic injury and apoptosis induced by streptozotocin or to liver injury by combined N-acetyl-D-glucosaminidase inhibition and Fas administration. The enhanced apoptosis in the livers of mice that express K18–Gly involves the inactivation of Akt1 and protein kinase Cθ as a result of their site-specific hypophosphorylation. Akt1 binds to K8, which probably contributes to the reciprocal hyperglycosylation and hypophosphorylation of Akt1 that occurs on K18 hypoglycosylation, and leads to decreased Akt1 kinase activity. Therefore, K18 glycosylation provides a unique protective role in epithelial injury by promoting the phosphorylation and activation of cell-survival kinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of K18–Gly predisposes transgenic mice to STZ-induced injury.
Figure 2: Comparison of the STZ-induced tissue injury in wild-type K18- versus K18–Gly-expressing mice.
Figure 3: Immunostaining microscopy of pancreata from wild-type K18 and K18–Gly-expressing mice, and biochemical assessment of apoptosis in liver and pancreas tissues.
Figure 4: Expression of the K18–Gly mutant predisposes transgenic mice to PUGNAc/Fas-induced injury.
Figure 5: Expression of the K18–Gly mutation alters protein kinase phosphorylation and promotes apoptosis in response to STZ treatment.
Figure 6: Expression of K18–Gly inhibits Akt1 Thr 308 phosphorylation and decreases Hsp70, which is acccompanied by enhanced apoptosis in response to PUGNAc/Fas treatment.
Figure 7: K8/K18 and Akt1 association is independent of PUGNAc/Fas treatment and Akt1 associates with keratin 8.
Figure 8: Model of K8 association with Akt1 and the effect of K18 glycosylation on reciprocal Akt1 phosphorylation and glycosylation.

Similar content being viewed by others

References

  1. Ku, N. -O., Zhou, X., Toivola, D. M. & Omary, M. B. The cytoskeleton of digestive epithelia in health and disease. Am. J. Physiol. 277, G1108–1137 (1999).

    CAS  PubMed  Google Scholar 

  2. Fuchs, E. & Cleveland, D. W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    Article  CAS  Google Scholar 

  3. Omary, M. B., Coulombe, P. A. & McLean, W. H. Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087–2100 (2004).

    Article  CAS  Google Scholar 

  4. Coulombe, P. A. & Omary, M. B. 'Hard' and 'Soft' principles defining the strucuture, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14, 110–122 (2002).

    Article  CAS  Google Scholar 

  5. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B. & Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24 (1982).

    Article  CAS  Google Scholar 

  6. Ku, N. -O., Gish, R., Wright, T. L. & Omary, M. B. Keratin 8 mutations in patients with cryptogenic liver disease. N. Engl. J. Med. 344, 1580–1587 (2001).

    Article  CAS  Google Scholar 

  7. Ku, N. -O. et al. Keratins as susceptibility genes for end-stage liver disease. Gastroenterology 129, 885–893 (2005).

    Article  CAS  Google Scholar 

  8. Omary, M. B., Ku, N. -O., Strnad, P. & Hanada, S. Towards unraveling the complexity of 'simple' epithelial keratins in human disease. J. Clin. Invest. 119, 1794–1805 (2009).

    Article  CAS  Google Scholar 

  9. Strnad, P. et al. Keratin variants predispose acute liver failure and adverse outcome: race and ethnic associations. Gastroenterology 139, 828–835 (2010).

    Article  CAS  Google Scholar 

  10. Oriolo, A. S., Wald, F. A., Ramsauer, V. P. & Salas, P. J. Intermediate filaments: a role in epithelial polarity. Exp. Cell Res. 313, 2255–2264 (2007).

    Article  CAS  Google Scholar 

  11. Toivola, D. M., Tao, G. Z., Habtezion, A., Liao, J. & Omary, M. B. Beyond cellular integrity: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15, 608–617 (2005).

    Article  CAS  Google Scholar 

  12. Kim, S. & Coulombe, P. A. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Biol. 11, 75–81 (2010).

    Article  Google Scholar 

  13. Omary, M. B., Ku, N. -O., Tao, G. Z., Toivola, D. M. & Liao, J. 'Heads and tails' of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem. Sci. 31, 383–394 (2006).

    Article  CAS  Google Scholar 

  14. Ku, N. -O. & Omary, M. B. A disease and phosphorylation related non-mechanical function for keratin 8. J. Cell Biol. 174, 115–125 (2006).

    Article  CAS  Google Scholar 

  15. Chou, C. F., Smith, A. J. & Omary, M. B. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267, 3901–3906 (1992).

    CAS  PubMed  Google Scholar 

  16. Ku, N. -O. & Omary, M. B. Identification and mutational analysis of the glycosylation sites of human keratin 18. J. Biol. Chem. 270, 11820–11827 (1995).

    Article  CAS  Google Scholar 

  17. Omary, M. B., Ku, N. -O., Liao, J. & Price, D. Keratin modifications and solubility properties in epithelial cells and in vitro. Subcell. Biochem. 31, 105–140 (1998).

    CAS  PubMed  Google Scholar 

  18. Kudlow, J. E. Post-translational modification by O-GlcNAc: another way to change protein function. J. Cell Biochem. 98, 1062–1075 (2006).

    Article  CAS  Google Scholar 

  19. Zeidan, Q. & Hart, G. W. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J. Cell Sci. 123, 13–22 (2010).

    Article  CAS  Google Scholar 

  20. Haltiwanger, R. S. & Philipsberg, G. A. Mitotic arrest with nocodazole induces selective changes in the level of O-linked N-acetylglucosamine and accumulation of incompletely processed N-glycans on proteins from HT29 cells. J. Biol. Chem. 272, 8752–8758 (1997).

    Article  CAS  Google Scholar 

  21. Chou, C. F. & Omary, M. B. Mitotic arrest with anti-microtubule agents or okadaic acid is associated with increased glycoprotein terminal GlcNAc's. J. Cell Sci. 107, 1833–1843 (1994).

    CAS  PubMed  Google Scholar 

  22. Hart, G. W., Housley, M. P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    Article  CAS  Google Scholar 

  23. Yang, W. H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat. Cell Biol. 8, 1074–1083 (2006).

    Article  CAS  Google Scholar 

  24. Love, D. C. & Hanover, J. A. The hexosamine signaling pathway: deciphering the 'O-GlcNAc code'. Sci. STKE 2005, re13 (2005).

    PubMed  Google Scholar 

  25. Zachara, N. E. et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133–30142 (2004).

    Article  CAS  Google Scholar 

  26. Ngoh, G. A. et al. Unique hexosaminidase reduces metabolic survival signal and sensitizes cardiac myocytes to hypoxia/reoxygenation injury. Circ. Res. 104, 41–49 (2009).

    Article  CAS  Google Scholar 

  27. Slawson, C., Copeland, R. J. & Hart, G. W. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci. doi: 10.1016/j.tibs.2010.04.005 (in the press).

  28. Wang, Z., Gucek, M. & Hart, G. W. Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc. Natl Acad. Sci. USA 105, 13793–13798 (2008).

    Article  CAS  Google Scholar 

  29. Gao, Y., Parker, G. J. & Hart, G. W. Streptozotocin-induced β-cell death is independent of its inhibition of O-GlcNAcase in pancreatic Min6 cells. Arch. Biochem. Biophys. 383, 296–302 (2000).

    Article  CAS  Google Scholar 

  30. Vosseller, K., Wells, L., Lane, M. D. & Hart, G. W. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc. Natl Acad. Sci. USA 99, 5313–5318 (2002).

    Article  CAS  Google Scholar 

  31. Abe, M. & Oshima, R. G. A single human keratin 18 gene is expressed in diverse epithelial cells of transgenic mice. J. Cell Biol. 111, 1197–1206 (1990).

    Article  CAS  Google Scholar 

  32. Ku, N. -O., Strnad, P., Zhong, B. H., Tao, G. Z. & Omary, M. B. Keratins let liver live: mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology 46, 1639–1649 (2007).

    Article  CAS  Google Scholar 

  33. Gukovskaya, A. S., Gukovsky, I., Jung, Y., Mouria, M. & Pandol, S. J. Cholecystokinin induces caspase activation and mitochondrial dysfunction in pancreatic acinar cells. Roles in cell injury processes of pancreatitis. J. Biol. Chem. 277, 22595–22604 (2002).

    Article  CAS  Google Scholar 

  34. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  Google Scholar 

  35. Stambolic, V. & Woodgett, J. R. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol. 16, 461–466 (2006).

    Article  CAS  Google Scholar 

  36. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  37. Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 15, 2203–2208 (2001).

    Article  CAS  Google Scholar 

  38. Andjelkovic, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515–31524 (1997).

    Article  CAS  Google Scholar 

  39. Parker, P. J. & Murray-Rust, J. PKC at a glance. J. Cell Sci. 117, 131–132 (2004).

    Article  CAS  Google Scholar 

  40. Liu, Y., Graham, C., Li, A., Fisher, R. J. & Shaw, S. Phosphorylation of the protein kinase C-theta activation loop and hydrophobic motif regulates its kinase activity, but only activation loop phosphorylation is critical to in vivo nuclear-factor-kappaB induction. Biochem. J. 361, 255–265 (2002).

    Article  CAS  Google Scholar 

  41. Hayashi, K. & Altman, A. Protein kinase C theta (PKCθ): a key player in T cell life and death. Pharmacol. Res. 55, 537–544 (2007).

    Article  CAS  Google Scholar 

  42. Nadeau, S. I. & Landry, J. Mechanisms of activation and regulation of the heat shock-sensitive signaling pathways. Adv. Exp. Med. Biol. 594, 100–113 (2007).

    Article  Google Scholar 

  43. Paramio, J. M., Segrelles, C., Ruiz, S. & Jorcano, J. L. Inhibition of protein kinase B (PKB) and PKCζ mediates keratin K10-induced cell cycle arrest. Mol. Cell Biol. 21, 7449–7459 (2001).

    Article  CAS  Google Scholar 

  44. Ku, N. -O. et al. Mutation of a major keratin phosphorylation site predisposes to hepatotoxic injury in transgenic mice. J. Cell Biol. 143, 2023–2032 (1998).

    Article  CAS  Google Scholar 

  45. Ku, N. -O., Soetikno, R. M. & Omary, M. B. Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury. Hepatology 37, 1006–1014 (2003).

    Article  CAS  Google Scholar 

  46. Ku, N. -O., Michie, S., Oshima, R. G. & Omary, M. B. Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J. Cell Biol. 131, 1303–1314 (1995).

    Article  CAS  Google Scholar 

  47. Magin, T. M. et al. Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J. Cell Biol. 140, 1441–1451 (1998).

    Article  CAS  Google Scholar 

  48. Soesanto, Y. A. et al. Regulation of Akt signalling by O-GlcNAc in euglycemia. Am. J. Physiol. Endocrinol. Metab. 295, E974–980 (2008).

    Article  CAS  Google Scholar 

  49. Dong, D. L., Xu, Z. S., Hart, G. W. & Cleveland, D. W. Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J. Biol. Chem. 271, 20845–20852 (1996).

    Article  CAS  Google Scholar 

  50. Slawson, C., Lakshmanan, T., Knapp, S. & Hart, G. W. A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin. Mol. Biol. Cell. 19, 4130–4140 (2008).

    Article  CAS  Google Scholar 

  51. Ku, N. -O. et al. Studying simple epithelial keratins in cells and tissues. Methods Cell Biol. 78, 489–517 (2004).

    Article  CAS  Google Scholar 

  52. Ku, N. -O., Liao, J. & Omary, M. B. Apoptosis generates stable fragments of human type I keratins. J. Biol. Chem. 272, 33197–33203 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Oshima (The Sanford-Burnham Medical Research Institute) and T. Magin (University of Leipzig) for making the mice that express wild-type K18 and the K18-null available to us, Y. Chen-Tsai and the Stanford University Transgenic Facility for helping generate the transgenic mice, E. Resurreccion for assistance with immune staining and P. Chu for assistance with hematoxylin and eosin staining. This work was supported by NIH grant DK47918 and the Department of Veterans Affairs (M.B.O.), NIH Digestive Disease Center grant DK56339 to Stanford University, NIH Michigan Gastrointestinal Peptide Research Center grant DK34933 and WCU project (R31-2008-000-10086-0) from the Korean Ministry of Education, Science and Technology to N. -O.K.

Author information

Authors and Affiliations

Authors

Contributions

N.-O.K. and M.B.O. conceived and designed the study. N.-O.K., D.M.T. and P.S. performed the experiments and analysed the data. N.-O.K., D.M.T., P.S. and M.B.O. interpreted the data. N.-O.K. and M.B.O. wrote the manuscript with comments from D.M.T. and P.S.

Corresponding authors

Correspondence to Nam-On Ku or M. Bishr Omary.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, NO., Toivola, D., Strnad, P. et al. Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol 12, 876–885 (2010). https://doi.org/10.1038/ncb2091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing