Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

External forces control mitotic spindle positioning

Abstract

The response of cells to forces is essential for tissue morphogenesis and homeostasis. This response has been extensively investigated in interphase cells, but it remains unclear how forces affect dividing cells. We used a combination of micro-manipulation tools on human dividing cells to address the role of physical parameters of the micro-environment in controlling the cell division axis, a key element of tissue morphogenesis. We found that forces applied on the cell body direct spindle orientation during mitosis. We further show that external constraints induce a polarization of dynamic subcortical actin structures that correlate with spindle movements. We propose that cells divide according to cues provided by their mechanical micro-environment, aligning daughter cells with the external force field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retraction fibre distribution dictates mitotic spindle orientation.
Figure 2: Retraction fibres exert strong forces on the mitotic cell body.
Figure 3: Stretching retraction fibres induces spindle rotation.
Figure 4: Adhesion geometry can bias dynamic subcortical actin structures in mitotic cells.
Figure 5: Quantification of subcortical actin polarization for different adhesion geometries.
Figure 6: Polarization of dynamic subcortical actin structures persists when astral microtubules are depolymerized and the spindle is misoriented.
Figure 7: Mitotic spindle rotation and movement strongly correlate with polarization of dynamic subcortical actin structures.
Figure 8: Subcortical actin structures exert pulling forces on the mitotic spindle.

Similar content being viewed by others

References

  1. Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

    Article  PubMed  Google Scholar 

  2. Ahringer, J. Control of cell polarity and mitotic spindle positioning in animal cells. Curr. Opin. Cell Biol. 15, 73–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez-Minan, A., Martin-Bermudo, M. D. & Gonzalez-Reyes, A. Integrin signaling regulates spindle orientation in Drosophila to preserve the follicular-epithelium monolayer. Curr. Biol. 17, 683–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Toyoshima, F. & Nishida, E. Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J. 26, 1487–1498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7, 947–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  PubMed  Google Scholar 

  9. Terenna, C. R. et al. Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr. Biol. 18, 1748–1753 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farhadifar, R., Roper, J. C., Aigouy, B., Eaton, S. & Julicher, F. The influence of cell mechanics, cell–cell interactions, and proliferation on epithelial packing. Curr. Biol. 17, 2095–2104 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thery, M., Jimenez-Dalmaroni, A., Racine, V., Bornens, M. & Julicher, F. Experimental and theoretical study of mitotic spindle orientation. Nature 447, 493–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Cramer, L. P. & Mitchison, T. J. Myosin is involved in postmitotic cell spreading. J. Cell Biol. 131, 179–189 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Azioune, A., Storch, M., Bornens, M., Thery, M. & Piel, M. Simple and rapid process for single cell micro-patterning. Lab. on a chip 9, 1640–1642 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Burton, K. & Taylor, D. L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chartier, L. et al. Calyculin-A increases the level of protein phosphorylation and changes the shape of 3T3 fibroblasts. Cell Motil. Cytoskeleton 18, 26–40 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Jungbauer, S., Gao, H., Spatz, J. P. & Kemkemer, R. Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys. J. 95, 3470–3478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Connell, C. B. & Wang, Y. L. Mammalian spindle orientation and position respond to changes in cell shape in a dynein-dependent fashion. Mol. Biol. Cell 11, 1765–1774 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Effler, J. C. et al. Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape. Curr. Biol. 16, 1962–1967 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton 64, 822–832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitsushima, M. et al. Revolving movement of a dynamic cluster of actin filaments during mitosis. J. Cell Biol. 191, 453–462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamaguchi, M. S. & Hiramoto, Y. Analysis of the role of astral rays in pronuclear migration in sand dollar eggs by the colcemid-UV method. Dev. Growth Differ. 28, 143–156 (1986).

    Article  Google Scholar 

  27. Minc, N., Burgess, D. & Chang, F. Influence of cell geometry on division-plane positioning. Cell 144, 414–426 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wuhr, M., Tan, E. S., Parker, S. K., Detrich, H. W. 3rd & Mitchison, T. J. A model for cleavage plane determination in early amphibian and fish embryos. Curr. Biol. 20, 2040–2045 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Azoury, J. et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Schuh, M. & Ellenberg, J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Woolner, S., O’Brien, L. L., Wiese, C. & Bement, W. M. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshigi, M., Hoffman, L. M., Jensen, C. C., Yost, H. J. & Beckerle, M. C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Woodard, G. E. et al. Ric-8A and Gi alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell Biol. 30, 3519–3530 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hamant, O. et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ranft, J. et al. Fluidization of tissues by cell division and apoptosis. Proc. Natl Acad. Sci. USA 107, 20863–20868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Azioune, A., Carpi, N., Tseng, Q., Thery, M. & Piel, M. Protein micropatterns: a direct printing protocol using deep UVs. Methods Cell Biol. 97, 133–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Tolic-Norrelykke, S. F. & Schaffer, E. Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77, 103101–103111 (2006).

    Article  Google Scholar 

  38. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hertwig, O. Ueber den Werth der ersten Furchungszellen für die Organbildung des Embryo. Experimentelle Studien am Frosch-und Tritonei. Arch. Mikrosk. Anat. 42, 662–807 (1893).

    Article  Google Scholar 

  40. Boulanger, J. et al. Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans. Med. Imaging 29, 442–454 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Colombelli for helpful discussions and preliminary experiments on retraction fibre cutting; L. Mahadevan for helpful discussions concerning mechanical cortex anisotropy; D. Gerlich (ETH, Zurich, Switzerland) and R. Tsien (UCSD, San Diego, USA) for the pIRES-puro3–MyrPalm–GFP plasmid; V. Doye (IJM, Paris, France) for the pIRES-neo–histone2B–mCherry plasmid; W. Bement (University of Wisconsin, Madison, USA) for the GFP–Utr-CH plasmid; R. Wedlich-Soldner (IMPRS, Martinsried, Germany) and G. Montagnac (Institut Curie, Paris, France) for the Lifeact–mCherry plasmid; M. Heuze (Institut Curie, Paris, France) and A. M. Lennon-Dumesnil (Institut Curie, Paris, France) for the Lifeact–mCherry lentivirus; V. Fraisier, the Nikon Imaging Center and the PICT–IBiSA of the Institut Curie for technical support in microscopy; J. Boulanger for image treatment using ndsafir; and Z. Maciarowski, C. Guérin and A. Viguier for FACS sorting of stable cell lines. We thank M. Thery and J. Aubertin for helpful discussions throughout the course of this work and A. W. Murray, E. Paluch, A. M. Lennon-Dumesnil, A. Taddei, M. Thery, S. Misery-Lenkei and members of the Piel laboratory for critical reading of the manuscript. This work was supported by the Centre National de la Recherche Scientifique, the Institut Curie and by ANR (ANR-06-PCVI-0010) and HFSP grants to M.P. J.F. was supported by pre-doctoral fellowships from Boehringer Ingelheim Fonds and the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Contributions

J.F. designed, carried out and analysed most experiments and wrote the article, N.C. carried out most cell stretching experiments as well as experiments shown in Fig. 2f and Supplementary Fig. S3, T.B. carried out and analysed optical trap experiments (Fig. 2c–e), A.B. carried out some cell stretching experiments, M.C. carried out the experiments shown in Fig. 2f and Supplementary Fig. S3, A.A. developed the method to produce micropatterns on stretchable substrates, M.B. contributed ideas, discussion and supervised part of the work of J.F., C.S. contributed ideas and discussion and supervised the work on optical trap experiments, L.F. carried out laser ablation experiments (Fig. 1), D.C. set up the cell stretching device, supervised the work of A.B. and contributed ideas and discussion, and M.P. supervised the work, carried out experiments and wrote the paper.

Corresponding author

Correspondence to Matthieu Piel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1372 kb)

Supplementary Information

Supplementary Movie 1 (MOV 3276 kb)

Supplementary Information

Supplementary Movie 2 (MOV 5103 kb)

Supplementary Information

Supplementary Movie 3 (MOV 5099 kb)

Supplementary Information

Supplementary Movie 4 (MOV 6803 kb)

Supplementary Information

Supplementary Movie 5 (MOV 5944 kb)

Supplementary Information

Supplementary Movie 6 (MOV 4590 kb)

Supplementary Information

Supplementary Movie 7 (MOV 7568 kb)

Supplementary Information

Supplementary Movie 8 (MOV 7677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, J., Carpi, N., Betz, T. et al. External forces control mitotic spindle positioning. Nat Cell Biol 13, 771–778 (2011). https://doi.org/10.1038/ncb2269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing