Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

E-box-independent regulation of transcription and differentiation by MYC

Abstract

MYC proto-oncogene is a key player in cell homeostasis that is commonly deregulated in human carcinogenesis1. MYC can either activate or repress target genes by forming a complex with MAX (ref. 2). MYC also exerts MAX-independent functions that are not yet fully characterized3. Cells possess an intrinsic pathway that can abrogate MYC–MAX dimerization and E-box interaction, by inducing phosphorylation of MYC in a PAK2-dependent manner at three residues located in its helix–loop–helix domain4. Here we show that these carboxy-terminal phosphorylation events switch MYC from an oncogenic to a tumour-suppressive function. In undifferentiated cells, MYC–MAX is targeted to the promoters of retinoic-acid-responsive genes by its direct interaction with the retinoic acid receptor-α (RARα). MYC–MAX cooperates with RARα to repress genes required for differentiation, in an E-box-independent manner. Conversely, on C-terminal phosphorylation of MYC during differentiation, the complex switches from a repressive to an activating function, by releasing MAX and recruiting transcriptional co-activators. Phospho-MYC synergizes with retinoic acid to eliminate circulating leukaemic cells and to decrease the level of tumour invasion. Our results identify an E-box-independent mechanism for transcriptional regulation by MYC that unveils previously unknown functions for MYC in differentiation. These may be exploited to develop alternative targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MYC regulates RA-target genes in a phosphorylation-dependent manner.
Figure 2: MYC regulates RARE-containing genes by binding to RARα.
Figure 3: MYC recruits co-regulators to RARα-target genes and is phosphorylated by activated PAK2 during cell differentiation.
Figure 4: Phosphorylation of MYC by PAK2 is required for proper RA-target gene activation and cell differentiation.
Figure 5: Phospho-MYC potentates RA therapy in leukaemia, both in vitro and in vivo.

Similar content being viewed by others

References

  1. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  Google Scholar 

  2. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  3. Gallant, P. & Steiger, D. Myc’s secret life without Max. Cell Cycle 8, 3848–3853 (2009).

    Article  CAS  Google Scholar 

  4. Huang, Z., Traugh, J. A. & Bishop, J. M. Negative control of the Myc protein by the stress-responsive kinase Pak2. Mol. Cell. Biol. 24, 1582–1594 (2004).

    Article  CAS  Google Scholar 

  5. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  Google Scholar 

  6. Eilers, M. & Eisenman, R. N. Myc’s broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  Google Scholar 

  7. Kiessling, A., Sperl, B., Hollis, A., Eick, D. & Berg, T. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules. Chem. Biol. 13, 745–751 (2006).

    Article  CAS  Google Scholar 

  8. Patel, J. H., Loboda, A. P., Showe, M. K., Showe, L. C. & McMahon, S. B. Analysis of genomic targets reveals complex functions of MYC. Nat. Rev. Cancer 4, 562–568 (2004).

    Article  CAS  Google Scholar 

  9. Wingender, E., Dietze, P., Karas, H. & Knuppel, R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 24, 238–241 (1996).

    Article  CAS  Google Scholar 

  10. Frith, M. C. et al. Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res. 32, 1372–1381 (2004).

    Article  CAS  Google Scholar 

  11. Wang, Z. Y. & Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111, 2505–2515 (2008).

    Article  CAS  Google Scholar 

  12. Altucci, L. & Gronemeyer, H. The promise of retinoids to fight against cancer. Nat. Rev. Cancer 1, 181–193 (2001).

    Article  CAS  Google Scholar 

  13. Lehmann, S., Paul, C. & Torma, H. Retinoid receptor expression and its correlation to retinoid sensitivity in non-M3 acute myeloid leukemia blast cells. Clin. Cancer Res. 7, 367–373 (2001).

    CAS  PubMed  Google Scholar 

  14. Amati, B. et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233–245 (1993).

    Article  CAS  Google Scholar 

  15. de The, H., Vivanco-Ruiz, M. M., Tiollais, P., Stunnenberg, H. & Dejean, A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature 343, 177–180 (1990).

    Article  CAS  Google Scholar 

  16. Forman, B. M., Casanova, J., Raaka, B. M., Ghysdael, J. & Samuels, H. H. Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol. Endocrinol. 6, 429–442 (1992).

    CAS  PubMed  Google Scholar 

  17. Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    Article  CAS  Google Scholar 

  18. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  CAS  Google Scholar 

  19. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  Google Scholar 

  20. Chakravarti, D. et al. Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  CAS  Google Scholar 

  21. Heinzel, T. et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).

    Article  CAS  Google Scholar 

  22. Karagianni, P. & Wong, J. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene 26, 5439–5449 (2007).

    Article  CAS  Google Scholar 

  23. Kurland, J. F. & Tansey, W. P. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 68, 3624–3629 (2008).

    Article  CAS  Google Scholar 

  24. Nowak, D., Stewart, D. & Koeffler, H. P. Differentiation therapy of leukemia: 3 decades of development. Blood 113, 3655–3665 (2009).

    Article  CAS  Google Scholar 

  25. Villa, R. et al. Epigenetic gene silencing in acute promyelocytic leukemia. Biochem. Pharmacol. 68, 1247–1254 (2004).

    Article  CAS  Google Scholar 

  26. Grant, S. Ara-C: cellular and molecular pharmacology. Adv. Cancer Res. 72, 197–233 (1998).

    Article  CAS  Google Scholar 

  27. Mosier, D. E., Gulizia, R. J., Baird, S. M. & Wilson, D. B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335, 256–259 (1988).

    Article  CAS  Google Scholar 

  28. Jung, J. H. & Traugh, J. A. Regulation of the interaction of Pak2 with Cdc42 via autophosphorylation of serine 141. J. Biol. Chem. 280, 40025–40031 (2005).

    Article  CAS  Google Scholar 

  29. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    Article  CAS  Google Scholar 

  30. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  Google Scholar 

  31. Yu, V. C. et al. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67, 1251–1266 (1991).

    Article  CAS  Google Scholar 

  32. Buschbeck, M. et al. PML4 induces differentiation by Myc destabilization. Oncogene 26, 3415–3422 (2007).

    Article  CAS  Google Scholar 

  33. Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002).

    Article  CAS  Google Scholar 

  34. Bour, G. et al. Cyclin H binding to the RARα activation function (AF)-2 domain directs phosphorylation of the AF-1 domain by cyclin-dependent kinase 7. Proc. Natl Acad. Sci. USA 102, 16608–16613 (2005).

    Article  CAS  Google Scholar 

  35. Morey, L. et al. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol. Cell. Biol. 28, 5912–5923 (2008).

    Article  CAS  Google Scholar 

  36. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  Google Scholar 

  37. Buschbeck, M. et al. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16, 1074–1079 (2009).

    Article  CAS  Google Scholar 

  38. Flicek, P. et al. Ensembl’s 10th year. Nucleic Acids Res. 38, D557–D562 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Berg and C. Rochette-Egly for reagents, P. Muñoz-Cánoves, S. de la Luna and G. Gil for discussions, S. Colomer-Lahiguera and J. Douet for graphical assistance, V. Valero for technical support and V. A. Raker for helpful discussions about the manuscript. This work was supported by grants from the ‘Fondo de Investigación Sanitario’ (FIS, Spanish Ministerio de Sanidad) to S.A.B.; and from the Spanish ‘Ministerio de Educación y Ciencia’, AGAUR and ‘Fundació La Marató’ to L.D.C. I.U. has been supported by an FPI fellowship of the Spanish Ministerio de Ciencia y Educación, M.B. by a DFG and a Ramón y Cajal fellowship, S.T. by a ‘La Caixa’ fellowship and S.D. by a PFIS fellowship.

Author information

Authors and Affiliations

Authors

Contributions

I.U. and M.B. carried out reporter assays, co-immunoprecipitations and ChIPs; I.U. and A.G. conducted cellular infections, flow cytometry analyses and gene expression experiments as well as differentiation studies with assistance from J.F.N; I.U., M.B., S.T. and S.D. carried out recombinant protein expression, pulldown experiments and phosphorylation assays; B.K. carried out Flag-affinity purification and generated HEK293T MYC–ER stable clones; J.M-C. carried out the experimental work on mice, assisted by I.U. and A.G.; G.R. carried out all bioinformatic analyses; L.D.C., S.A.B. and I.U. supervised the project and designed the experiments; I.U., M.B., S.A.B. and L.D.C. wrote the manuscript.

Corresponding authors

Correspondence to Salvador Aznar Benitah or Luciano Di Croce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1362 kb)

Supplementary Table 1

Supplementary Information (XLS 976 kb)

Supplementary Table 2

Supplementary Information (XLS 34 kb)

Supplementary Table 3

Supplementary Information (XLS 114 kb)

Supplementary Table 4

Supplementary Information (XLS 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uribesalgo, I., Buschbeck, M., Gutiérrez, A. et al. E-box-independent regulation of transcription and differentiation by MYC. Nat Cell Biol 13, 1443–1449 (2011). https://doi.org/10.1038/ncb2355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2355

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer