Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The TRPM7 channel is inactivated by PIP2 hydrolysis

Abstract

TRPM7 (ChaK1, TRP-PLIK, LTRPC7) is a ubiquitous, calcium-permeant ion channel that is unique in being both an ion channel and a serine/threonine kinase. The kinase domain of TRPM7 directly associates with the C2 domain of phospholipase C (PLC). Here, we show that in native cardiac cells and heterologous expression systems, Gαq-linked receptors or tyrosine kinase receptors that activate PLC potently inhibit channel activity. Numerous experimental approaches demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2), the substrate of PLC, is a key regulator of TRPM7. We conclude that receptor-mediated activation of PLC results in the hydrolysis of localized PIP2, leading to inactivation of the TRPM7 channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPM7 conductance is inhibited by CCh stimulation of the M1 receptor.
Figure 2: Concurrent activation of PIP2 hydrolysis and inhibition of channel activity by CCh.
Figure 3: The kinase domain of TRPM7 interacts with the C2 domain of PLC.
Figure 4: PKC and DAG do not affect ITRPM7.
Figure 5: PIP2 speeds channel recovery.
Figure 6: PIP2 regulates single-channel activity.
Figure 7: Oleoyl-LPA inhibits a TRPM7-like current in ventricular fibroblasts.
Figure 8: A model of TRPM7 regulation by PIP2 and PLC.

Similar content being viewed by others

References

  1. Runnels, L. W., Yue, L. & Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).

    Article  CAS  Google Scholar 

  2. Nadler, M. J. S. et al. LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  Google Scholar 

  3. Duncan, L. M. et al. Melastatin expression and prognosis in cutaneous malignant melanoma. J. Clin. Oncol. 19, 568–576 (2001).

    Article  CAS  Google Scholar 

  4. Clapham, D. E., Runnels, L. W. & Strübing, C. The TRP ion channel family. Nature Rev. Neurosci. 2, 387–396 (2001).

    Article  CAS  Google Scholar 

  5. Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000).

    Article  CAS  Google Scholar 

  6. Montell, C. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Science STKE (cited 10 Jul 2001) 〈http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2001/90/re1〉 (2001).

    Google Scholar 

  7. Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    Article  CAS  Google Scholar 

  8. Niemeyer, B. A., Suzuki, E., Scott, K., Jalink, K. & Zuker, C. S. The Drosophila light-activated conductance is composed of the two channels, TRP and TRPL. Cell 85, 651–659 (1996).

    Article  CAS  Google Scholar 

  9. Xu, X. Z., Chien, F., Butler, A., Salkoff, I. & Montell, C. TRPγ, a Drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron 26, 647–657 (2000).

    Article  CAS  Google Scholar 

  10. Bloomquist, B. T. et al. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54, 723–733 (1988).

    Article  CAS  Google Scholar 

  11. Hardie, R. C. & Raghu, P. Visual transduction in Drosophila. Nature 413, 186–193 (2001).

    Article  CAS  Google Scholar 

  12. Hardie, R. C. et al. Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30, 145–159 (2001).

    Article  Google Scholar 

  13. Chyb, S., Padinjat, R. & Hardie, R. C. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397, 255–259 (1999).

    Article  CAS  Google Scholar 

  14. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  Google Scholar 

  15. Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  CAS  Google Scholar 

  16. Sui, J. L., Petit-Jacques, J. & Logothetis, D. E. Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl Acad. Sci. USA 95, 1307–1312 (1998).

    Article  CAS  Google Scholar 

  17. Chuang, H.-H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).

    Article  CAS  Google Scholar 

  18. Peralta, E. G., Ashkenazi, A., Winslow, J. W., Ramachandran, J. & Capon, D. J. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, 434–437 (1988).

    Article  CAS  Google Scholar 

  19. Ashkenazi, A., Peralta, E. G., Winslow, J. W., Ramachandran, J. & Capon, D. J. Functional diversity of muscarinic receptor subtypes in cellular signal transduction and growth. Trends Pharmacol. Sci. Suppl. 16–22 (1989).

  20. Garcia, P. et al. The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34, 16228–16234 (1995).

    Article  CAS  Google Scholar 

  21. Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    Article  CAS  Google Scholar 

  22. Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510 (1998).

    Article  CAS  Google Scholar 

  23. Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H. & Iino, M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex calcium mobilization patterns. Science 284, 1527–1530 (1999).

    Article  CAS  Google Scholar 

  24. Wu, D., Jiag, H., Katz, A. & Simon, M. I. Identification of critical regions on phospholipase C-β1 required for activation by G proteins. J. Biol. Chem. 268, 3704–3709 (1993).

    CAS  PubMed  Google Scholar 

  25. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  26. Clapham, D. E. Calcium signalling. Cell 80, 259–268 (1995).

    Article  CAS  Google Scholar 

  27. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and Proteins: Interactions, organization and information flow. Annu. Rev. Biophys. Biomol. Struct. (In the press).

  28. Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–318 (1998).

    Article  CAS  Google Scholar 

  29. Oancea, E., Teruel, M. N., Quest, A. F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signalling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  Google Scholar 

  30. Wakelam, M. J. O. Diacylglycerol - when is it an intracellular messenger? Biochim. Biophys. Acta 1436, 117–126 (1998).

    Article  CAS  Google Scholar 

  31. Nakanishi, S., Catt, K. J., & Balla, T. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositol phospholipids. Proc. Natl Acad. Sci. USA 92, 5317–5321 (1995).

    Article  CAS  Google Scholar 

  32. Downing, G. J., Kim, S., Nakanishi, S., Catt, K. J., & Balla, T. Characterization of a soluble adrenal phosphatidylinositol 4-kinase reveals wortmannin sensitivity of type III phosphatidylinositol kinases. Biochemistry 35, 3587–3594 (1996).

    Article  CAS  Google Scholar 

  33. Willars, G. B., Nahorski, S. R., & Challis, R. A. J. Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signalling in human neuroblastoma cells. J. Biol. Chem. 273, 5037–5046 (1998).

    Article  CAS  Google Scholar 

  34. Xie, L.-H., Horie, M. & Takano, M. Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4,5-bisphosphate metabolism. Proc. Natl Acad. Sci. USA 96, 15292–15297 (1999).

    Article  CAS  Google Scholar 

  35. Broad, L. M. et al. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J. Biol. Chem. 276, 15945–15952 (2001).

    Article  CAS  Google Scholar 

  36. Cho, H., Nam G.-B., Lee, S. H., Earm, Y. E., & Ho, W.-K. Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in α1-adrenergic pathway via the modulation of acetylcholine-activate K+ channels in mouse atrial myocytes. J. Biol. Chem. 276, 159–164 (2001).

    Article  CAS  Google Scholar 

  37. Margolis, B. et al. EGF induces tyrosine phosphorylation of phospholipase C-II: a potential mechanism for EGF receptor signalling. Cell 57, 1101–1107 (1989).

    Article  CAS  Google Scholar 

  38. Cochet, C., Filhol, O., Payrastre, B. Hunter, T., & Gill, G. N. Interaction between the epidermal growth factor receptor and phosphoinositide kinases. J. Biol. Chem. 266, 637–644 (2001).

    Google Scholar 

  39. Thomas, C. L., Steel, J., Prestwich, G. D. & Schiavo, G. Generation of phosphatidylinositol-specific antibodies and their characterization. Biochem. Soc. Trans. 27, 648–652 (1999).

    Article  CAS  Google Scholar 

  40. Fukami, K. et al. Antibody to phosphatidylinositol 4,5-bisphosphate inhibits oncogene-induced mitogenesis. Proc. Natl Acad. Sci. USA 85, 9057–9061 (1988).

    Article  CAS  Google Scholar 

  41. Moolenaar, W. H. et al. Growth factor-like action of phosphatidic acid. Nature 323, 171–173 (1986).

    Article  CAS  Google Scholar 

  42. Van Corven, E. J., Groenink, A., Jalink, K., Eichholtz, & Moolenaar, W. H. Lysophosphatidate-induced cell proliferation identification and dissection of signalling pathways mediated by G proteins. Cell 59, 45–54 (1989).

    Article  CAS  Google Scholar 

  43. Moolenaar, W. H. Bioactive lysophospholipids and their G protein-coupled receptors. Exp. Cell Res. 252, 230–238 (1999).

    Article  Google Scholar 

  44. Ishii, I., Contos, J. J. A., Fukushima, N., & Chun, J. Functional comparisons of the lysophosphatidic acid receptors, LPA1/VZG-1/EDG-2, LPA2/EDG-4, and LPA3/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol. Pharmacol. 58, 895–902 (2000).

    Article  CAS  Google Scholar 

  45. Contos, J. J. A., Ishii, I., & Chun, J. Lysophosphatidic acid receptors. Molecular Pharmacology. 58, 1188–1196 (2000).

    Article  CAS  Google Scholar 

  46. Romani, A. M. P. & Scarpa, A. Regulation of cellular magnesium. Front. Biosci. 5, 7210–7734 (2000).

    Article  Google Scholar 

  47. Harman, A. W., Nieminen, A.-L., Lemasters, J. J., & Herman, B. Cytosolic free magnesium, ATP, and blebbing during chemical hypoxia in cultured rat hepatocytes. Biochem. Biophys. Res. Commun. 170, 477–483 (1990).

    Article  CAS  Google Scholar 

  48. Hilgemann, D. W., Feng, S., & Nasuhoglu, C. The complex and intriguing lives of PIP2 with ion channels and transporters. Science STKE (cited 04 December 2001) 〈http:/stke.sciencemag.org/cgi/content/full/OC_sigtrans;2001/111/re19〉 (2001).

  49. Morris, A. J. One wheel on my wagon: lysolipid phosphate signalling. Trends Pharmacol. Sci. 20, 393–395 (1999).

    Article  CAS  Google Scholar 

  50. Rebecchi, M. J. & Pentyala, S. N. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80, 1291–1335 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Goo Rhee for PLC-β4 and PLC-γ1 cDNAs, M. Rebecchi for expression plasmids containing PLC-δ1 and the PH domain of PLC-δ1, and E. Oancea for the C12–GFP and GFP-tagged PLC-δ1 expression constructs. We also thank Q. Shi for her technical advice in culturing ventricular fibroblasts and L. Cantley, C. Carpenter, A. Morris and S. McLaughlin for helpful discussions. L.Y. was supported by the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clapham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runnels, L., Yue, L. & Clapham, D. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 4, 329–336 (2002). https://doi.org/10.1038/ncb781

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing