Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers

Abstract

Fullerene anions and cations have unique structural, electronic, magnetic and chemical properties that make them substantially different from neutral fullerenes. Although much theoretical effort has been devoted to characterizing and predicting their properties, this has been limited to a fraction of isomeric forms, mostly for fullerene anions, and has practically ignored fullerene cations. Here we show that the concepts of cage connectivity and frontier π orbitals allow one to understand the relative stability of charged fullerene isomers without performing elaborate quantum chemistry calculations. The latter is not a trivial matter, as the number of possible isomers for a medium-sized fullerene is many more than 100,000. The model correctly predicts the structures observed experimentally and explains why the isolated pentagon rule is often violated for fullerene anions, but the opposite is found for fullerene cations. These predictions are relevant in fields as diverse as astrophysics, electrochemistry and supramolecular chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative energies of three isomers of C70 containing, respectively, 0, 2 and 3 adjacent pentagon pairs.
Figure 2: Relationship between isomer structure and cage connectivity, and between the latter and the properties of the π molecular orbitals, for two isomers of C90.
Figure 3: Correlation between the charge stabilization energy CSEiq, resulting from SCC-DFTB calculations, and the variation of π energy Xiq, predicted by the HMO model, due to addition or removal of |q| electrons to (from) the corresponding neutral isomer i.
Figure 4: Relative values of the charge stabilization index ΔCSI for the charged fullerene isomers.
Figure 5: Changes in bond orders (in units of –2β) resulting from charging the C76, C80 and C92 fullerenes.

Similar content being viewed by others

References

  1. Martin, N. New challenges in fullerene chemistry. Chem. Commun. 2006, 2093–2104 (2006).

    Article  Google Scholar 

  2. Reed, C. A. & Bolskar, R. D. Discrete fulleride anions and fullerenium cations. Chem. Rev. 100, 1075–1120 (2000).

    Article  CAS  Google Scholar 

  3. Lu, X., Feng, L., Akasaka, T. & Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 41, 7723–7760 (2012).

    Article  Google Scholar 

  4. Popov, A. A., Yang, S. & Dunsch, L. Endohedral fullerenes. Chem. Rev. 113, 5989–6113 (2013).

    Article  CAS  Google Scholar 

  5. Rudolf, M. et al. Endohedral metallofullerenes—filled fullerene derivatives towards multifunctional reaction center mimics. Chem. Eur. J. 18, 5136–5148 (2012).

    Article  CAS  Google Scholar 

  6. Anilkumar, P. et al. Fullerenes for applications in biology and medicine. Curr. Med. Chem. 18, 2045–2059 (2011).

    Article  CAS  Google Scholar 

  7. Iezzi, E. B., Duchamp, J. C., Fletcher, K. R., Glass, T. E. & Dorn, H. C. Lutetium-based trimetallic nitride endohedral metallofullerenes: new contrast agents. Nano Lett. 2, 1187–1190 (2002).

    Article  CAS  Google Scholar 

  8. Cagle, D. W., Kennel, S. J., Mirzadeh, S., Alford, J. M. & Wilson, L. J. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers. Proc. Natl Acad. Sci. USA 96, 5182–5187 (1999).

    Article  CAS  Google Scholar 

  9. Meng, J., Liang, X., Chen, X. & Zhao, Y. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr. Biol. 5, 43–47 (2013).

    Article  CAS  Google Scholar 

  10. McCluskey, D. M. et al. Evidence for singlet-oxygen generation and biocidal activity in photoresponsive metallic nitride fullerene−polymer adhesive films. ACS Appl. Mater. Interfaces 1, 882–887 (2009).

    Article  CAS  Google Scholar 

  11. Iwasa, Y. & Takenobu, T. Superconductivity, Mott–Hubbard states, and molecular orbital order in intercalated fullerides. J. Phys. Condens. Matter 15, R495 (2003).

    Article  CAS  Google Scholar 

  12. Allemand, P. M. et al. Organic molecular soft ferromagnetism in a fullerene C60 . Science 253, 301–302 (1991).

    Article  CAS  Google Scholar 

  13. Wang, Y., Alcamí, M. & Martín, F. in Handbook of Nanophysics Vol. 2 (ed. Sattler, K. D.) Ch. 25, 1–23 (Taylor & Francis, 2010).

    Google Scholar 

  14. Ehrler, O. T., Weber, J. M., Furche, F. & Kappes, M. M. Photoelectron spectroscopy of C84 dianions. Phys. Rev. Lett. 91, 113006 (2003).

    Article  Google Scholar 

  15. Tomita, S. et al. Lifetimes of and dianions in a storage ring. J. Chem. Phys. 124, 024310 (2006).

    Article  CAS  Google Scholar 

  16. Wang, X.-B., Woo, H.-K., Huang, X., Kappes, M. M. & Wang, L.-S. Direct experimental probe of the on-site Coulomb repulsion in the doubly charged fullerene anion . Phys. Rev. Lett. 96, 143002 (2006).

    Article  Google Scholar 

  17. Echegoyen, L. & Echegoyen, L. E. Electrochemistry of fullerenes and their derivatives. Acc. Chem. Res. 31, 593–601 (1998).

    Article  CAS  Google Scholar 

  18. Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).

    Article  CAS  Google Scholar 

  19. Berné, O., Mulas, G. & Joblin, C. Interstellar . Astron. Astrophys. 550, L4 (2013).

    Article  Google Scholar 

  20. Iglesias-Groth, S. & Esposito, M. A search for near infrared bands of the fullerene cation in the protoplanetary nebula iras 01005+7910. Astrophys. J. 776, L2 (2013).

    Article  Google Scholar 

  21. Bohme, D. K. Multiply-charged ions and interstellar chemistry. Phys. Chem. Chem. Phys. 13, 18253–18263 (2011).

    Article  Google Scholar 

  22. Zettergren, H. et al. Formations of dumbbell C118 and C119 inside clusters of C60 molecules by collision with α particles. Phys. Rev. Lett. 110, 185501 (2013).

    Article  CAS  Google Scholar 

  23. Goodman, G., Gershwin, M. E. & Bercovich, D. Fullerene and the origin of life. Isr. Med. Assoc. J. 14, 602–606 (2012).

    PubMed  Google Scholar 

  24. Bohme, D. K. Buckminsterfullerene cations: new dimensions in gas-phase ion chemistry. Mass Spectrom. Rev. 28, 672–693 (2009).

    Article  CAS  Google Scholar 

  25. Campbell, E. E. B., Hansen, K., Heden, M., Kjellberg, M. & Bulgakov, A. V. Ionisation of fullerenes and fullerene clusters using ultrashort laser pulses. Photochem. Photobiol. Sci. 5, 1183–1189 (2006).

    Article  CAS  Google Scholar 

  26. Bhardwaj, V. R., Corkum, P. B. & Rayner, D. M. Internal laser-induced dipole force at work in C60 molecule. Phys. Rev. Lett. 91, 203004 (2003).

    Article  CAS  Google Scholar 

  27. Reed, C. A., Kim, K.-C., Bolskar, R. D. & Mueller, L. J. Taming superacids: stabilization of the fullerene cations and Science 289, 101–104 (2000).

    Article  CAS  Google Scholar 

  28. Bruno, C. et al. Electrochemical generation of and . J. Am. Chem. Soc. 125, 15738–15739 (2003).

    Article  CAS  Google Scholar 

  29. Riccò, M. et al. Fullerenium salts: a new class of C60-based compounds. J. Am. Chem. Soc. 132, 2064–2068 (2010).

    Article  Google Scholar 

  30. Bruno, C. et al. Growth of p- and n-dopable films from electrochemically generated C60 cations. J. Am. Chem. Soc. 130, 3788–3796 (2008).

    Article  CAS  Google Scholar 

  31. Schon, J. H., Kloc, C. & Batlogg, B. Superconductivity at 52 K in hole-doped C60 . Nature 408, 549–552 (2000).

    Article  CAS  Google Scholar 

  32. Fowler, P. W. & Manolopoulos, D. E. Magic numbers and stable structures for fullerenes, fullerides and fullerenium ions. Nature 355, 428–430 (1992).

    Article  CAS  Google Scholar 

  33. Fowler, P. & Zerbetto, F. Charging and equilibration of fullerene isomers. Chem. Phys. Lett. 243, 36–41 (1995).

    Article  CAS  Google Scholar 

  34. Kroto, H. W. The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329, 529–531 (1987).

    Article  CAS  Google Scholar 

  35. Campbell, E., Fowler, P., Mitchell, D. & Zerbetto, F. Increasing cost of pentagon adjacency for larger fullerenes. Chem. Phys. Lett. 250, 544–548 (1996).

    Article  CAS  Google Scholar 

  36. Albertazzi, E. et al. Pentagon adjacency as a determinant of fullerene stability. Phys. Chem. Chem. Phys. 1, 2913–2918 (1999).

    Article  CAS  Google Scholar 

  37. Tan, Y.-Z., Xie, S.-Y., Huang, R.-B. & Zheng, L.-S. The stabilization of fused-pentagon fullerene molecules. Nature Chem. 1, 450–460 (2009).

    Article  CAS  Google Scholar 

  38. Martín, N. Fullerene C72Cl4: The exception that proves the rule? Angew. Chem. Int. Ed. 50, 5431–5433 (2011).

    Article  Google Scholar 

  39. Ioffe, I. et al. Chlorination of C86 to C84Cl32 with nonclassical heptagon-containing fullerene cage formed by cage shrinkage. Angew. Chem. Int. Ed. 49, 4784–4787 (2010).

    Article  CAS  Google Scholar 

  40. Tan, Y.-Z. et al. Two Ih-symmetry-breaking C60 isomers stabilized by chlorination. Nature Mater. 7, 790–794 (2008).

    Article  CAS  Google Scholar 

  41. Popov, A. A. & Dunsch, L. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M=Sc,Y; 2n = 68–98): a density functional theory study. J. Am. Chem. Soc. 129, 11835–11849 (2007).

    Article  CAS  Google Scholar 

  42. Zettergren, H., Alcamí, M. & Martín, F. Stable non-IPR C60 and C70 fullerenes containing a uniform distribution of pyrenes and adjacent pentagons. ChemPhysChem 9, 861–866 (2008).

    Article  CAS  Google Scholar 

  43. Raghavachari, K. Ground state of C84: two almost isoenergetic isomers. Chem. Phys. Lett. 190, 397–400 (1992).

    Article  CAS  Google Scholar 

  44. Rodríguez-Fortea, A., Alegret, N., Balch, A. L. & Poblet, J. M. The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nature Chem. 2, 955–961 (2010).

    Article  Google Scholar 

  45. Garcia-Borràs, M., Osuna, S., Swart, M., Luis, J. M. & Solà, M. Maximum aromaticity as a guiding principle for the most suitable hosting cages in endohedral metallofullerenes. Angew. Chem. Int. Ed. 52, 9275–9278 (2013).

    Article  Google Scholar 

  46. Elstner, M. et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998).

    Article  CAS  Google Scholar 

  47. Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 111, 5678 (2007).

    Article  CAS  Google Scholar 

  48. Frisch, M. J. et al. Gaussian 09, Revision C.01 (Gaussian, 2010).

    Google Scholar 

  49. Fowler, P. & Manolopoulos, D. E. An Atlas of Fullerenes (Clarendon, 1995).

    Google Scholar 

  50. Chen, N. et al. Sc2S@C2 (7892)-C70: a metallic sulfide cluster inside a non-IPR C70 cage. Chem. Sci. 4, 180–186 (2013).

    Article  Google Scholar 

  51. Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

    Article  CAS  Google Scholar 

  52. Yang, H. et al. Isolation and crystallographic identification of four isomers of Sm@C90 . J. Am. Chem. Soc. 133, 6299–6306 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the allocation of computer time at the Centro de Computación Científica at the Universidad Autónoma de Madrid (CCC-UAM). This work was supported by MINECO projects FIS2013-42002-R, FIS2013-40667-P and CTQ2013-43698-P, CAM project NANOFRONTMAG-CM (ref. S2013/MIT-2850) and the European COST Action CM1204 XLIC. S.D.-T. acknowledges support from the ‘Ramón y Cajal’ programme.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., S.D.-T., M.A. and F.M. conceived and designed the calculations. Y.W. performed the calculations. Y.W., S.D.-T., M.A. and F.M. analysed the data. Y.W. contributed materials/analysis tools. F.M. wrote the paper.

Corresponding author

Correspondence to Fernando Martín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Díaz-Tendero, S., Alcamí, M. et al. Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers. Nature Chem 7, 927–934 (2015). https://doi.org/10.1038/nchem.2363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing