Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric sensitization of proapoptotic BAX

Abstract

BCL-2-associated X protein (BAX) is a critical apoptotic regulator that can be transformed from a cytosolic monomer into a lethal mitochondrial oligomer, yet drug strategies to modulate it are underdeveloped due to longstanding difficulties in conducting screens on this aggregation-prone protein. Here, we overcame prior challenges and performed an NMR-based fragment screen of full-length human BAX. We identified a compound that sensitizes BAX activation by binding to a pocket formed by the junction of the α3–α4 and α5–α6 hairpins. Biochemical and structural analyses revealed that the molecule sensitizes BAX by allosterically mobilizing the α1–α2 loop and BAX BH3 helix, two motifs implicated in the activation and oligomerization of BAX, respectively. By engaging a region of core hydrophobic interactions that otherwise preserve the BAX inactive state, the identified compound reveals fundamental mechanisms for conformational regulation of BAX and provides a new opportunity to reduce the apoptotic threshold for potential therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STD NMR–based identification of BAX-interacting fragments that modulate BH3-mediated BAX activation.
Figure 2: Validation of BIF-44 as a dose-responsive binder and sensitizer of BAX.
Figure 3: BIF-44 targets the vMIA-binding region of BAX.
Figure 4: Allosteric deprotection of the α1–α2 loop and BAX BH3 domain upon BIF-44 binding.
Figure 5: BIF-44 sensitizes the BH3-triggered conformational activation and cytochrome c release activity of BAX.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Suzuki, M., Youle, R.J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    CAS  PubMed  Google Scholar 

  2. Edlich, F. et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Czabotar, P.E. et al. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013).

    CAS  PubMed  Google Scholar 

  4. Edwards, A.L. et al. Multimodal interaction with BCL-2 family proteins underlies the proapoptotic activity of PUMA BH3. Chem. Biol. 20, 888–902 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gavathiotis, E., Reyna, D.E., Davis, M.L., Bird, G.H. & Walensky, L.D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell 40, 481–492 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barclay, L.A. et al. Inhibition of pro-apoptotic BAX by a noncanonical interaction mechanism. Mol. Cell 57, 873–886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma, J. et al. Structural mechanism of Bax inhibition by cytomegalovirus protein vMIA. Proc. Natl. Acad. Sci. USA 109, 20901–20906 (2012).

    CAS  PubMed  Google Scholar 

  9. Petros, A.M. et al. Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA 98, 3012–3017 (2001).

    CAS  PubMed  Google Scholar 

  10. Walensky, L.D. & Gavathiotis, E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci. 36, 642–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Souers, A.J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    CAS  PubMed  Google Scholar 

  12. Sattler, M. et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    CAS  PubMed  Google Scholar 

  13. Lessene, G. et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat. Chem. Biol. 9, 390–397 (2013).

    CAS  PubMed  Google Scholar 

  14. Tao, Z.F. et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett. 5, 1088–1093 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    CAS  PubMed  Google Scholar 

  16. Bruncko, M. et al. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J. Med. Chem. 58, 2180–2194 (2015).

    CAS  PubMed  Google Scholar 

  17. Cohen, N.A. et al. A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival. Chem. Biol. 19, 1175–1186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016).

    PubMed  Google Scholar 

  19. Leverson, J.D. et al. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis. 6, e1590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pelz, N.F. et al. Discovery of 2-indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods. J. Med. Chem. 59, 2054–2066 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stewart, M.L., Fire, E., Keating, A.E. & Walensky, L.D. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat. Chem. Biol. 6, 595–601 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huhn, A.J., Guerra, R.M., Harvey, E.P., Bird, G.H. & Walensky, L.D. Selective covalent targeting of anti-apoptotic BFL-1 by cysteine-reactive stapled peptide inhibitors. Cell. Chem. Biol. 23, 1123–1134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gavathiotis, E., Reyna, D.E., Bellairs, J.A., Leshchiner, E.S. & Walensky, L.D. Direct and selective small-molecule activation of proapoptotic BAX. Nat. Chem. Biol. 8, 639–645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brahmbhatt, H., Uehling, D., Al-Awar, R., Leber, B. & Andrews, D. Small molecules reveal an alternative mechanism of Bax activation. Biochem. J. 473, 1073–1083 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xin, M. et al. Small-molecule Bax agonists for cancer therapy. Nat. Commun. 5, 4935 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, G. et al. Activation of the proapoptotic Bcl-2 protein Bax by a small molecule induces tumor cell apoptosis. Mol. Cell. Biol. 34, 1198–1207 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Wang, K., Gross, A., Waksman, G. & Korsmeyer, S.J. Mutagenesis of the BH3 domain of BAX identifies residues critical for dimerization and killing. Mol. Cell. Biol. 18, 6083–6089 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Scott, D.E., Coyne, A.G., Hudson, S.A. & Abell, C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51, 4990–5003 (2012).

    CAS  PubMed  Google Scholar 

  29. Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 38, 1784–1788 (1999).

    CAS  PubMed  Google Scholar 

  30. Stockman, B.J. & Dalvit, C. NMR screening techniques in drug discovery and drug design. Prog. Nucl. Magn. Reson. Spectrosc. 41, 187–231 (2002).

    CAS  Google Scholar 

  31. Tan, C. et al. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J. Biol. Chem. 281, 14764–14775 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei, M.C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pagliari, L.J. et al. The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc. Natl. Acad. Sci. USA 102, 17975–17980 (2005).

    CAS  PubMed  Google Scholar 

  34. Sarosiek, K.A. et al. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell 51, 751–765 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McGovern, S.L., Helfand, B.T., Feng, B. & Shoichet, B.K. A specific mechanism of nonspecific inhibition. J. Med. Chem. 46, 4265–4272 (2003).

    CAS  PubMed  Google Scholar 

  36. Irwin, J.J. et al. An aggregation advisor for ligand discovery. J. Med. Chem. 58, 7076–7087 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Julien, O. et al. Unraveling the mechanism of cell death induced by chemical fibrils. Nat. Chem. Biol. 10, 969–976 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Arnoult, D. et al. Cytomegalovirus cell death suppressor vMIA blocks Bax- but not Bak-mediated apoptosis by binding and sequestering Bax at mitochondria. Proc. Natl. Acad. Sci. USA 101, 7988–7993 (2004).

    CAS  PubMed  Google Scholar 

  39. Poncet, D. et al. An anti-apoptotic viral protein that recruits Bax to mitochondria. J. Biol. Chem. 279, 22605–22614 (2004).

    CAS  PubMed  Google Scholar 

  40. Kozakov, D. et al. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat. Protoc. 10, 733–755 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Engen, J.R. Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal. Chem. 81, 7870–7875 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Laiken, S.L., Printz, M.P. & Craig, L.C. Tritium-hydrogen exchange studies of protein models. I. Gramicidin S-A. Biochemistry 8, 519–526 (1969).

    CAS  PubMed  Google Scholar 

  43. Printz, M.P., Williams, H.P. & Craig, L.C. Evidence for the presence of hydrogen-bonded secondary structure in angiotensin II in aqueous solution. Proc. Natl. Acad. Sci. USA 69, 378–382 (1972).

    CAS  PubMed  Google Scholar 

  44. Shi, X.E. et al. Hydrogen exchange-mass spectrometry measures stapled peptide conformational dynamics and predicts pharmacokinetic properties. Anal. Chem. 85, 11185–11188 (2013).

    CAS  PubMed  Google Scholar 

  45. Hsu, Y.T. & Youle, R.J. Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829–13834 (1997).

    CAS  PubMed  Google Scholar 

  46. Goping, I.S. et al. Regulated targeting of BAX to mitochondria. J. Cell Biol. 143, 207–215 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Follis, A.V. et al. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat. Chem. Biol. 9, 163–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, S. et al. Allosteric inhibition of antiapoptotic MCL-1. Nat. Struct. Mol. Biol. 23, 600–607 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    CAS  PubMed  Google Scholar 

  50. Leshchiner, E.S., Braun, C.R., Bird, G.H. & Walensky, L.D. Direct activation of full-length proapoptotic BAK. Proc. Natl. Acad. Sci. USA 110, E986–E995 (2013).

    CAS  PubMed  Google Scholar 

  51. Bird, G.H., Crannell, W.C. & Walensky, L.D. Chemical synthesis of hydrocarbon-stapled peptides for protein interaction research and therapeutic targeting. Curr. Protoc. Chem. Biol. 3, 99–117 (2011).

    PubMed  PubMed Central  Google Scholar 

  52. Pitter, K., Bernal, F., Labelle, J. & Walensky, L.D. Dissection of the BCL-2 family signaling network with stabilized alpha-helices of BCL-2 domains. Methods Enzymol. 446, 387–408 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hajduk, P.J., Olejniczak, E.T. & Fesik, S.W. One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J. Am. Chem. Soc. 119, 12257–12261 (1997).

    CAS  Google Scholar 

  54. Hwang, T.-L. & Shaka, A.J. Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J. Magn. Reson. A 112, 275–279 (1995).

    CAS  Google Scholar 

  55. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    CAS  PubMed  Google Scholar 

  56. Williamson, M.P. Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 73, 1–16 (2013).

    CAS  PubMed  Google Scholar 

  57. Grant, B.J., Rodrigues, A.P., ElSawy, K.M., McCammon, J.A. & Caves, L.S. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 22, 2695–2696 (2006).

    CAS  PubMed  Google Scholar 

  58. Skjærven, L., Yao, X.Q., Scarabelli, G. & Grant, B.J. Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics 15, 399 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Yao, X.Q., Skjærven, L. & Grant, B.J. Rapid characterization of allosteric networks with ensemble normal mode analysis. J. Phys. Chem. B 120, 8276–8288 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Llambi, F. et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44, 517–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Smith for graphics support; C. Sheahan for operational assistance with the NMR screen; M. Godes for assistance with mitochondrial preparation; G. Bird and T. Oo for peptide production; M. Ericsson and Z. Hauseman for technical assistance with electron microscopy; H.-S. Seo and S. Dhe-Paganon for ITC experiments; and D. Andrews (Sunnybrook Research Institute) and K. Sarosiek (Harvard T.H. Chan School of Public Health) for providing BIML plasmid and protein, respectively. This research was supported by NIH grant 1R35CA197583, a Leukemia and Lymphoma Society (LLS) Scholar Award, the Todd J. Schwartz Memorial Fund, the Wolpoff Family Foundation, and a grant from the William Lawrence and Blanche Hughes Foundation to L.D.W.; NIH grant R01GM101135 to J.R.E. and a research collaboration with the Waters Corporation (J.R.E.); NIH grant F31CA189651 to J.R.P.; an Alexander von Humboldt Foundation Feodor Lynen Fellowship to F.W.; and NIH training grant T32GM007753 to J.L.

Author information

Authors and Affiliations

Authors

Contributions

J.R.P., F.W., J.L., G.J.H., W.M., S.L., T.E.W., J.R.E., and L.D.W. designed the study; J.R.P., F.W., and D.T.C. generated BAX protein, and J.R.P. conducted NMR experiments under the guidance of G.J.H., W.M., J.L., and L.D.W.; G.J.H., P.C., and W.M. analyzed screening results using software developed by P.C.; J.R.P. and F.W. performed biochemical and mitochondrial assays; J.L. performed the docking calculations and molecular dynamics simulations; S.L. and T.E.W. executed the HXMS experiments under the guidance of J.R.E.; all authors analyzed the data; and J.R.P., F.W., and L.D.W. wrote the manuscript, which was reviewed by all co-authors.

Corresponding author

Correspondence to Loren D Walensky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–12 (PDF 15465 kb)

Molecular dynamics simulation of BAX (PDB ID 1F16) in solution (100 ns)

The D1–D2 loop (yellow; top of screen) shows relatively little motion and remains fixed over the D1/D6 (orange/cyan) trigger site at the N-terminal face of BAX ("closed" conformation). (MOV 7329 kb)

Molecular dynamics simulation of BIF-44-bound BAX in solution (100 ns)

Compared to unliganded BAX, there is increased flexibility and intermittent release of the D1–D2 loop (yellow; top of screen) from the D1/D6 (orange/cyan) trigger site, where BH3 interaction and displacement of the loop to the "open" conformation represents the initiating structural change of direct BAX activation. BIF-44 (stick representation) remains stablypositioned at an allosteric binding site formed by the junction of the D3/D4 and D5/D6 hairpins, distant from the D1–D2 loop. (MOV 6394 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pritz, J., Wachter, F., Lee, S. et al. Allosteric sensitization of proapoptotic BAX. Nat Chem Biol 13, 961–967 (2017). https://doi.org/10.1038/nchembio.2433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing