Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation

Abstract

PTEN acts as a tumor suppressor in a range of tissue types and has been implicated in the regulation of intestinal stem cells. To study Pten function in the intestine, we used various conditional transgenic strategies to specifically delete Pten from the mouse intestinal epithelium. We show that Pten loss specifically within the adult or embryonic epithelial cell population does not affect the normal architecture or homeostasis of the epithelium. However, loss of Pten in the context of Apc deficiency accelerates tumorigenesis through increased activation of Akt, leading to rapid development of adenocarcinoma. We conclude that Pten is redundant in otherwise normal intestinal epithelium and epithelial stem cells but, in the context of activated Wnt signaling, suppresses progression to adenocarcinoma through modulation of activated Akt levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction with β-naphthoflavone causes recombination in the intestine, leading to loss of Pten protein from the epithelium.
Figure 2: Loss of Pten does not cause gross phenotypic changes in the small intestine.
Figure 3: Pten deletion results in increased levels of activated Akt.
Figure 4: Pten deficiency does not alter the number of crypt clonogens or β-catenin localization.
Figure 5: Loss of Pten in utero does not affect the normal development of the mouse small intestine.
Figure 6: Deficiency of both Pten and Apc leads to activation of Akt.
Figure 7: Pten deficiency causes rapid progression to adenocarcinoma, associated with increased activation of Akt.

Similar content being viewed by others

References

  1. Steck, P.A. et al. Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).

    Article  CAS  Google Scholar 

  2. Li, D.M. & Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. 57, 2124–2129 (1997).

    CAS  PubMed  Google Scholar 

  3. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  Google Scholar 

  4. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  5. Vivanco, I. & Sawyers, C.L. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  6. Parsons, D.W. et al. Colorectal cancer: mutations in a signalling pathway. Nature 436, 792 (2005).

    Article  CAS  Google Scholar 

  7. Carlson, G.J., Nivatvongs, S. & Snover, D.C. Colorectal polyps in Cowden's disease (multiple hamartoma syndrome). Am. J. Surg. Pathol. 8, 763–770 (1984).

    Article  CAS  Google Scholar 

  8. Merg, A. & Howe, J.R. Genetic conditions associated with intestinal juvenile polyps. Am. J. Med. Genet. C. Semin. Med. Genet. 129, 44–55 (2004).

    Article  Google Scholar 

  9. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P.P. Pten is essential for embryonic development and tumor suppression. Nat. Genet. 19, 348–355 (1998).

    Article  CAS  Google Scholar 

  10. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl. Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  Google Scholar 

  11. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  Google Scholar 

  12. He, X.C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat. Genet. 36, 1117–1121 (2004).

    Article  CAS  Google Scholar 

  13. Bjerknes, M. & Cheng, H. Re-examination of P-PTEN staining patterns in the intestinal crypt. Nat. Genet. 37, 1016–1017 (2005); reply 37, 1017–1018 (2005).

    Article  CAS  Google Scholar 

  14. Persad, S., Troussard, A.A., McPhee, T.R., Mulholland, D.J. & Dedhar, S. Tumor suppressor PTEN inhibits nuclear accumulation of β-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol. 153, 1161–1174 (2001).

    Article  CAS  Google Scholar 

  15. He, X.C. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat. Genet. 39, 189–198 (2007).

    Article  CAS  Google Scholar 

  16. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    Article  CAS  Google Scholar 

  17. Ireland, H. et al. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: Effect of loss of β-catenin. Gastroenterology 126, 1236–1246 (2004).

    Article  CAS  Google Scholar 

  18. Sansom, O.J., Griffiths, D.F., Reed, K.R., Winton, D.J. & Clarke, A.R. Apc deficiency predisposes to renal carcinoma in the mouse. Oncogene 24, 8205–8210 (2005).

    Article  CAS  Google Scholar 

  19. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  20. Horie, Y. et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J. Clin. Invest. 113, 1774–1783 (2004).

    Article  CAS  Google Scholar 

  21. Stiles, B. et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity. Proc. Natl. Acad. Sci. USA 101, 2082–2087 (2004).

    Article  CAS  Google Scholar 

  22. Backman, S.A. et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat. Genet. 29, 396–403 (2001).

    Article  CAS  Google Scholar 

  23. Freeman, D.J. et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3, 117–130 (2003).

    Article  CAS  Google Scholar 

  24. Sansom, O.J. et al. MBD4 deficiency reduces the apoptotic response to DNA-damaging agents in the murine small intestine. Oncogene 22, 7130–7136 (2003).

    Article  CAS  Google Scholar 

  25. El Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article  CAS  Google Scholar 

  26. Backman, S.A. et al. Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Proc. Natl. Acad. Sci. USA 101, 1725–1730 (2004).

    Article  CAS  Google Scholar 

  27. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    Article  CAS  Google Scholar 

  28. Kemp, R. et al. Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. Nucleic Acids Res. 32, e92 (2004).

    Article  Google Scholar 

  29. Sansom, O.J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation and migration. Genes Dev. 18, 1385–1390 (2004).

    Article  CAS  Google Scholar 

  30. Mende, I., Malstrom, S., Tsichlis, P.N., Vogt, P.K. & Aoki, M. Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene 20, 4419–4423 (2001).

    Article  CAS  Google Scholar 

  31. Dahia, P.L. PTEN, a unique tumor suppressor gene. Endocr. Relat. Cancer 7, 115–129 (2000).

    Article  CAS  Google Scholar 

  32. Li, G. et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 129, 4159–4170 (2002).

    CAS  PubMed  Google Scholar 

  33. Schneider, A., Zhang, Y., Guan, Y., Davis, L.S. & Breyer, M.D. Differential, inducible gene targeting in renal epithelia, vascular endothelium, and viscera of Mx1Cre mice. Am. J. Physiol. Renal Physiol. 284, F411–F417 (2003).

    Article  CAS  Google Scholar 

  34. Beppu, H. et al. Stromal inactivation of BMPRII leads to colorectal epithelial overgrowth and polyp formation. Oncogene 27, 1063–1070 (2008).

    Article  CAS  Google Scholar 

  35. Katajisto, P. et al. LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nat. Genet. 40, 455–459 (2008).

    Article  CAS  Google Scholar 

  36. Jansen, M. et al. Mucosal prolapse in the pathogenesis of Peutz-Jeghers polyposis. Gut 55, 1–5 (2006).

    Article  CAS  Google Scholar 

  37. Chen, M.L. et al. The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/− mice. Genes Dev. 20, 1569–1574 (2006).

    Article  CAS  Google Scholar 

  38. Bjerknes, M. & Cheng, H. Methods for the isolation of intact epithelium from the mouse intestine. Anat. Rec. 199, 565–574 (1981).

    Article  CAS  Google Scholar 

  39. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bishop, L. Pietzka and D. Scarborough for technical assistance and R. Kemp for assistance with the epithelial extraction protocol. Villin-CreERT2 mice were provided by S. Robine (Center National de la Recherche Scientifique/Institut Curie). This work was supported by Cancer Research UK and the Wales Gene Park and by grants to A.T. from the Swiss National Science Foundation, the Swiss Cancer League, the EU FP6 INTACT program and the EU FP7 program 'Eurosystem'.

Author information

Authors and Affiliations

Authors

Contributions

V.M., O.J.S., A.T. and A.R.C. designed this study; V.M., O.J.S., G.T.W. and N.D. did the phenotype assessment; and V.M., D.J.W., O.J.S. and A.R.C. contributed to the writing of this paper.

Corresponding author

Correspondence to Owen J Sansom.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Table 1 (PDF 408 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, V., Winton, D., Williams, G. et al. Epithelial Pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after Apc mutation. Nat Genet 40, 1436–1444 (2008). https://doi.org/10.1038/ng.256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing