Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder

Abstract

Transitional cell carcinoma (TCC) is the most common type of bladder cancer. Here we sequenced the exomes of nine individuals with TCC and screened all the somatically mutated genes in a prevalence set of 88 additional individuals with TCC with different tumor stages and grades. In our study, we discovered a variety of genes previously unknown to be mutated in TCC. Notably, we identified genetic aberrations of the chromatin remodeling genes (UTX, MLL-MLL3, CREBBP-EP300, NCOR1, ARID1A and CHD6) in 59% of our 97 subjects with TCC. Of these genes, we showed UTX to be altered substantially more frequently in tumors of low stages and grades, highlighting its potential role in the classification and diagnosis of bladder cancer. Our results provide an overview of the genetic basis of TCC and suggest that aberration of chromatin regulation might be a hallmark of bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic mutations in UTX, ARID1A and CREBBP-EP300.
Figure 2: Concurrent and mutually exclusive mutations observed in the frequently mutated genes.
Figure 3: Frequencies of mutations in highlighted genes across different tumor stages and grades.

Similar content being viewed by others

References

  1. Parkin, D.M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  Google Scholar 

  2. Wu, X.R. Urothelial tumorigenesis: a tale of divergent pathways. Nat. Rev. Cancer 5, 713–725 (2005).

    Article  CAS  Google Scholar 

  3. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18, 1851–1858 (2008).

    Article  CAS  Google Scholar 

  4. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  5. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  Google Scholar 

  6. Cordon-Cardo, C. et al. p53 mutations in human bladder cancer: genotypic versus phenotypic patterns. Int. J. Cancer 56, 347–353 (1994).

    Article  CAS  Google Scholar 

  7. Cairns, P., Proctor, A.J. & Knowles, M.A. Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene 6, 2305–2309 (1991).

    CAS  PubMed  Google Scholar 

  8. Jebar, A.H. et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24, 5218–5225 (2005).

    Article  CAS  Google Scholar 

  9. Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).

    Article  CAS  Google Scholar 

  10. Guenther, M.G., Barak, O. & Lazar, M.A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 (2001).

    Article  CAS  Google Scholar 

  11. Lutz, T., Stoger, R. & Nieto, A. CHD6 is a DNA-dependent ATPase and localizes at nuclear sites of mRNA synthesis. FEBS Lett. 580, 5851–5857 (2006).

    Article  CAS  Google Scholar 

  12. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet. 41, 521–523 (2009).

    Article  CAS  Google Scholar 

  13. Wiegand, K.C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  Google Scholar 

  14. Dalgliesh, G.L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  Google Scholar 

  15. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  Google Scholar 

  16. Chi, P., Allis, C.D. & Wang, G.G. Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  Google Scholar 

  17. Vogelstein, B. & Kinzler, K.W. Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004).

    Article  CAS  Google Scholar 

  18. Mullighan, C.G. et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471, 235–239 (2011).

    Article  CAS  Google Scholar 

  19. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

    Article  CAS  Google Scholar 

  20. Karamouzis, M.V., Konstantinopoulos, P.A. & Papavassiliou, A.G. Roles of CREB-binding protein (CBP)/p300 in respiratory epithelium tumorigenesis. Cell Res. 17, 324–332 (2007).

    Article  CAS  Google Scholar 

  21. Daser, A. & Rabbitts, T.H. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin. Cancer Biol. 15, 175–188 (2005).

    Article  CAS  Google Scholar 

  22. Parsons, D.W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science 331, 435–439 (2011).

    Article  CAS  Google Scholar 

  23. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  Google Scholar 

  24. Bakkar, A.A. et al. FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res. 63, 8108–8112 (2003).

    CAS  PubMed  Google Scholar 

  25. Jones, P.A. & Baylin, S.B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  Google Scholar 

  26. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  27. Koboldt, D.C. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285 (2009).

    Article  CAS  Google Scholar 

  28. Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).

    Article  CAS  Google Scholar 

  29. Getz, G. et al. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317, 1500 (2007).

    Article  CAS  Google Scholar 

  30. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National High Technology Research and Development Program of China (863 Program, 2006AA02A302 to H.Y. 2009AA022707 to X.Z.), the Promotion Program for Shenzhen Key Laboratory, Shenzhen, China (CXB200903090055A and CXB201005250016A to Z.C.), and Research Fund for the Doctoral Program of Higher Education of China (20100001110100).

Author information

Authors and Affiliations

Authors

Contributions

Jun Wang, Z.C., Jian Wang, H.Y., S.L. and Y.G. managed the project. A.T., X. Li, L.Z., Z. Li, F.Z., X. Zhao, C. Liang, C. Liu, Y.W., L.S., Z.J., Jing Chen, S. Wu, Z.Z., R. Yang, J. Zhao, C.X., Z.G., J.Y., H. Zhang and W.Y. prepared the samples. X.H., R.W., P.H., H.J., J.L. and X. Zhang performed the sequencing. Y.G., G.G., Y.H., S.G., C.C., M.H., W.J., R. Ye, Z. Liu, S. Wan, H. Zheng, K.K., M.L.N. and Y.L. performed the bioinformatic analysis. Y.H., X.H., Jinnong Chen, S.Y., X. Liu, D.F. and J. Zou performed the validation of somatic mutations. G.G. and Y.H. wrote the paper. Y.G., Jun Wang, Z.C., X.H., Y.L., D.T. and X.S. revised the paper.

Corresponding authors

Correspondence to Huanming Yang, Jun Wang or Zhiming Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–8. (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, Y., Guo, G., Huang, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 43, 875–878 (2011). https://doi.org/10.1038/ng.907

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.907

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer