Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli

Abstract

Several human hereditary neurological and neurodegenerative disease genes are associated with the expansion of CTG repeats. Here we show that the frequency of genetic expansions or deletions in Escherichia coli depends on the direction of replication. Large expansions occur predominantly when the CTGs are in the leading strand template rather than the lagging strand. However, deletions are more prominant when the CTGs are in the opposite orientation. Most deletions generated products of defined size classes. Strand slippage coupled with non–classical DMA structures may account for these observations and relate to expansion–deletion mechanisms in eukaryotic chromosomes for disease genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTQ) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  Google Scholar 

  2. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  Google Scholar 

  3. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  4. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  5. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on HD chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  6. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  Google Scholar 

  7. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    Article  CAS  Google Scholar 

  8. Wieringa, B. Myotonic dystrophy reviewed: back to the future. Hum. molec. Genet. 3, 1–7 (1994).

    Article  CAS  Google Scholar 

  9. Bingham, P.M. et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice. Nature Genet. 9, 191–196 (1995).

    Article  CAS  Google Scholar 

  10. Wells, R.D. Unusual DNA structures. J. biol. Chem. 263, 1095–1098 (1988).

    CAS  PubMed  Google Scholar 

  11. Wells, R.D., Collier, D.A., Hanvey, J.C., Shimizu, M. & Wohlrab, F. The chemistry and biology of unusual DNA structures adopted by oligopurine·oligopyrimidine sequences. FASEB J. 2, 2939–2949 (1988).

    Article  CAS  Google Scholar 

  12. Wells, R.D. & Sinden, R.R. Defined ordered sequence DNA, DNA structure, and DNA-directed mutation. Genome Analysis, (eds Davis, K.E. & Warren, ST.) (Cold Spring Harbor Laboratory Press, New York, (1993)7, 107–138.

    Google Scholar 

  13. Wohlrab, F., McLean, M.J. & Wells, R.D. The segment inversion site of herpes simplex virus type 1 adopts a novel DNA structure. J. biol. Chem. 262, 6407–6416 (1987).

    CAS  PubMed  Google Scholar 

  14. Podhajaska, A.J., Hassan, N. & Szybalski, W. Control of cloned gene expression by promoter inversion In vivo:construction of the heat-pulse-activated att-nutL-p-att-N module. Gene 40, 163–168 (1985).

    Article  Google Scholar 

  15. Kang, S., Wohlrab, F. & Wells, R.D. GC-rich flanking tracts decrease the kinetics of intramolecular DNA triplex formation. J. biol. Chem. 267, 19435–19442 (1992).

    CAS  PubMed  Google Scholar 

  16. Trinh, T.Q. & Sinden, R.R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication. in E coli. Nature 352, 544–548 (1991).

    Article  CAS  Google Scholar 

  17. Richards, R.I. & Sutherland, G.R. Simple repeat DNA is not replicated simply. Nature Genet. 6, 114–116 (1994).

    Article  CAS  Google Scholar 

  18. Eichler, E.E. et al. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genet. 8, 88–94 (1994).

    Article  CAS  Google Scholar 

  19. Marians, K.J. Prokaryotic DNA replication. A Rev. Btochem. 61, 673–719 (1992).

    Article  CAS  Google Scholar 

  20. Kitsberg, D. et al. Allele-specif ic replication timing of imprinted gene regions. Nature 364, 459–463 (1993).

    Article  CAS  Google Scholar 

  21. Coverly, D. & Laskey, R.A. Regulation of eukaryotic DNA replication. Ann. rev. Biochem. 63, 745–776 (1994).

    Article  Google Scholar 

  22. Wang, Y.-H., Amirhaeri, S., Kang, S., Wells, R.D. & Griffith, J.D. Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265, 669–671 (1994).

    Article  CAS  Google Scholar 

  23. Fu, Y.-H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  Google Scholar 

  24. Herrero, M., Lorenzo, V. & Timmis, K.N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172, 6557–6567 (1990).

    Article  CAS  Google Scholar 

  25. Dower, W.J., Miller, J. & Ragsdale, C.W. High efficiency transformation of E. coli by high voltage electroporation. Nucl. Acids Res. 16, 6127–6145 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S., Jaworski, A., Ohshima, K. et al. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet 10, 213–218 (1995). https://doi.org/10.1038/ng0695-213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing