Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protracted development of bioturbation through the early Palaeozoic Era

Abstract

Bioturbation, the physical and chemical mixing of sediment by burrowing animals, exerts an important control on the character of modern marine sediments and biogeochemical cycling1,2,3,4,5,6,7,8,9. Here we show that the mixing of sediments on marine shelves remained limited until at least the late Silurian, 120 million years after the Precambrian–Cambrian transition. We present ichnological, stratigraphic and taphonomic data from a range of lower Phanerozoic siliciclastic successions spanning four palaeocontinents. The protracted development of the sediment mixed layer is also consistent with sulphur data and global sulphur model simulations. The slow increase in the intensity of bioturbation in the sediment record suggests that evolutionary advances in sediment colonization outpaced advances in sediment mixing. We conclude that ecosystem restructuring caused by the onset of significant infaunal mobile deposit feeding (‘bulldozing’) occurred well after both the Cambrian Explosion and the Great Ordovician Biodiversification Event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower Palaeozoic trace fossil preservation and ichnofabrics.
Figure 2: Lower Palaeozoic changes in bed thickness.
Figure 3: Relative abundance of ichnofabric indices (ii) for each chronologic interval.
Figure 4: Modelled results of the impact of early Palaeozoic bioturbation on contemporaneous marine sulphate concentrations [SO4].

Similar content being viewed by others

References

  1. Aller, R. C. Bioturbation and remineralization of sedimentary organic-matter—effects of redox oscillation. Chem. Geol. 114, 331–345 (1994).

    Article  Google Scholar 

  2. Aller, R. C. in Animal-Sediment Relations: The Biogenic Alteration of Sediments (eds McCall, P. L. & Tevesz, M. J. S.) 53–102 (Plenum Press, 1982).

    Book  Google Scholar 

  3. Aller, R. C., Yingst, J. Y. & Ullman, W. J. Comparative biogeochemistry of water in intertidal Onuphis (Polychaeta) and Upogebia (Crustacea) burrows; temporal patterns and causes. J. Mar. Res. 41, 571–604 (1983).

    Article  Google Scholar 

  4. Rhoads, D. C. & Young, D. K. Influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res. 28, 150–178 (1970).

    Google Scholar 

  5. Thayer, C. W. Biological bulldozers and the evolution of marine benthic communities. Science 203, 458–461 (1979).

    Article  Google Scholar 

  6. Thayer, C. W. in Biotic Interactions in Recent and Fossil Benthic Communities (eds Tevesz, M. J. S. & McCall, P. L.) 480–595 (Plenum Press, 1983).

    Google Scholar 

  7. Boudreau, B. P. Mean mixed depth of sediments: The wherefore and the why. Limnol. Oceanogr. 43, 524–526 (1998).

    Article  Google Scholar 

  8. Teal, L. R., Bulling, M. T., Parker, E. R. & Solan, M. Global patterns of bioturbation intensity and mixed depth of marine soft sediments. Aquat. Biol. 2, 207–218 (2008).

    Article  Google Scholar 

  9. Teal, L. R., Parker, E. R. & Solan, M. Sediment mixed layer as a proxy for benthic ecosystem process and function. Mar. Ecol. Prog. Ser. 414, 27–40 (2010).

    Article  Google Scholar 

  10. Bromley, R. G. & Ekdale, A. A. Composite ichnofabrics and tiering of burrows. Geol. Mag. 123, 59–65 (1986).

    Article  Google Scholar 

  11. Tarhan, L. G. & Droser, M. L. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 310–322 (2014).

    Article  Google Scholar 

  12. Mangano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: Evolutionary and geobiological feedbacks. Proc. R. Soc. B 281, 20140038 (2014).

    Article  Google Scholar 

  13. Bluth, G. J. S. & Kump, L. R. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).

    Article  Google Scholar 

  14. Middleburg, J. J., Soetaert, K. & Herman, P. M. J. Empirical relationships for use in global diagenetic models. Deep-Sea Res. I 44, 327–344 (1997).

    Article  Google Scholar 

  15. Miller, M. F. & Smail, S. E.. A semiquantitative field method for evaluating bioturbation on bedding planes. Palaios 12, 391–396 (1997).

    Article  Google Scholar 

  16. Droser, M. L. & Bottjer, D. J. A semiquantitative field classification of ichnofabric. J. Sediment. Petrol. 56, 558–559 (1986).

    Article  Google Scholar 

  17. Tarhan, L. G., Droser, M. L. & Hughes, N. C. Exceptional trace fossil preservation and mixed layer development in Cambro-Ordovician siliciclastic strata. Mem. Assoc. Australas. Palaeontol. 45, 71–88 (2014).

    Google Scholar 

  18. Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. USA 106, 8123–8127 (2009).

    Article  Google Scholar 

  19. Wu, N. P., Farquhar, J., Strauss, H., Kim, S. T. & Canfield, D. E. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial. Geochim. Cosmochim. Acta 74, 2053–2071 (2010).

    Article  Google Scholar 

  20. Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc. Natl Acad. Sci. USA 110, 11244–11249 (2013).

    Article  Google Scholar 

  21. Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002).

    Article  Google Scholar 

  22. Brennan, S. T., Lowenstein, T. K. & Horita, J. Seawater chemistry and the advent of biocalcification. Geology 32, 473–476 (2004).

    Article  Google Scholar 

  23. Gill, B. C., Lyons, T. W. & Saltzman, M. R. Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 156–173 (2007).

    Article  Google Scholar 

  24. Berner, R. A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 309, 603–606 (2009).

    Article  Google Scholar 

  25. Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J. & Erwin, D. H. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Res. 23, 558–573 (2013).

    Article  Google Scholar 

  26. Awramik, S. M. Precambrian columnar stromatolite diversity—reflection of metazoan appearance. Science 174, 825–827 (1971).

    Article  Google Scholar 

  27. Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).

    Article  Google Scholar 

  28. Seilacher, A. Trilobite palaeobiology and substrate relationships. Trans. R. Soc. Edinburgh 76, 231–237 (1985).

    Google Scholar 

  29. Seilacher, A. Trace Fossil Analysis (Springer, 2007).

    Google Scholar 

  30. Crimes, T. P. Production and preservation of trilobite resting and furrowing traces. Lethaia 8, 35–48 (1975).

    Article  Google Scholar 

  31. Berner, R. A. Early Diagenesis: A Theoretical Approach (ed. Holland, H. D.) (Princeton Series in Geochemistry, Princeton Univ. Press, 1980).

    Google Scholar 

  32. Ekdale, A. A. & De Gibert, J. M. Paleoethologic significance of bioglyphs: Fingerprints of the subterraneans. Palaios 25, 540–545 (2010).

    Article  Google Scholar 

  33. Droser, M. L., Jensen, S., Gehling, J. G., Myrow, P. M. & Narbonne, G. M. Lowermost Cambrian ichnofabrics from the Chapel Island Formation, Newfoundland: Implications for Cambrian substrates. Palaios 17, 3–15 (2002).

    Article  Google Scholar 

  34. Jensen, S., Saylor, B. Z., Gehling, J. G. & Germs, G. J. B. Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28, 143–146 (2000).

    Article  Google Scholar 

  35. Vannier, J., Calandra, I., Gaillard, C. & Zylinska, A. Priapulid worms: Pioneer horizontal burrowers at the Precambrian–Cambrian boundary. Geology 38, 711–714 (2010).

    Article  Google Scholar 

  36. Wetzel, A. & Aigner, T. Stratigraphic completeness: Tiered trace fossils provide a measuring stick. Geology 14, 234–237 (1986).

    Article  Google Scholar 

  37. Elliott, R. E. A classification of subaqueous sedimentary structures based on rheological and kinematical parameters. Sedimentology 5, 193–209 (1965).

    Article  Google Scholar 

  38. Halevy, I., Peters, S. E. & Fischer, W. W. Sulfate burial constraints on the Phanerozoic sulfur cycle. Science 337, 331–334 (2012).

    Article  Google Scholar 

  39. Canfield, D. E. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle. Proc. Natl Acad. Sci. USA 110, 8443–8446 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by an NSF Graduate Research Fellowship, Amherst College John Mason Clarke Fellowship, Janet M. Boyce Memorial Fellowship and grants from the Society for Sedimentary Geology, Geological Society of America, Paleontological Society, American Museum of Natural History, Sigma Xi, InfoQuest Foundation, Evolving Earth Foundation and the Community Foundation (L.G.T.), as well as the NSF Earth-Life Transitions Program and NASA NAI UCR node (N.J.P.) and NASA NAI MIT node (D.J.T.). Permitted access to sections was provided by the Fortune Head Ecological Reserve (Canada) and Death Valley National Park (USA). Fieldwork was facilitated by D. Auerbach, E. Conrado, R. Dahl, J. Esteve, T. Garlock, J. Gehling, E. Haddad, C. Hall, L. Hancock, S. Jensen, L. Joel, T. Johnston, K. Keenan, N. McKenzie, A. Miller, P. Myrow, A. Ruiz, A. Sappenfield and R. Thomas. This paper benefited from discussion with D. Hardisty and C. Reinhard.

Author information

Authors and Affiliations

Authors

Contributions

L.G.T. conceived the study, with input from all authors. L.G.T. collected all field data and performed analyses. L.G.T. and N.J.P. developed the bioturbation-dependent sulphate model, with input from D.T.J. L.G.T. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Lidya G. Tarhan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 9512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarhan, L., Droser, M., Planavsky, N. et al. Protracted development of bioturbation through the early Palaeozoic Era. Nature Geosci 8, 865–869 (2015). https://doi.org/10.1038/ngeo2537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2537

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology