Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall

Abstract

Shifts in the latitude of the intertropical convergence zone—a region of intense tropical rainfall—have often been explained through changes in the atmospheric energy budget, specifically through theories that tie rainfall to meridional energy fluxes. These quantitative theories can explain shifts in the zonal mean, but often have limited relevance for regional climate shifts, such as a period of enhanced precipitation over Saharan Africa during the mid-Holocene. Here we present a theory for regional tropical rainfall shifts that utilizes both zonal and meridional energy fluxes. We first identify a qualitative link between zonal and meridional energy fluxes and rainfall variations associated with the seasonal cycle and the El Niño/Southern Oscillation. We then develop a quantitative theory based on these fluxes that relates atmospheric energy transport to tropical rainfall. When applied to the orbital configuration of the mid-Holocene, our theory predicts continental rainfall shifts over Africa and Southeast Asia that are consistent with complex model simulations. However, the predicted rainfall over the Sahara is not sufficient to sustain vegetation at a level seen in the palaeo-record, which instead requires an additional large energy source such as that due to reductions in Saharan surface albedo. We thus conclude that additional feedbacks, such as those involving changes in vegetation or soil type, are required to explain changes in rainfall over Africa during the mid-Holocene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One-dimensional perspective on the importance of zonal energy fluxes during the El Niño/Southern Oscillation.
Figure 2: Two-dimensional views of precipitation and divergent energy transports, visualized using the energy flux potential, χ.
Figure 3: Climate model simulations and theoretical prediction of boreal summer response to mid-Holocene insolation anomaly.
Figure 4: Response of African summer rainfall to mid-Holocene insolation and albedo changes.

Similar content being viewed by others

References

  1. Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weath. Rev. 115, 3–12 (1987).

    Article  Google Scholar 

  2. Chiang, J. C. H. & Bitz, C. M. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Clim. Dynam. 25, 477–496 (2005).

    Article  Google Scholar 

  3. Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 33, L01702 (2006).

    Article  Google Scholar 

  4. Chiang, J. C. & Friedman, A. R. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci. 40, 383–412 (2012).

    Article  Google Scholar 

  5. Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article  Google Scholar 

  6. Donohoe, A., Marshall, J., Ferreira, D. & Mcgee, D. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the last glacial maximum. J. Clim. 26, 3597–3618 (2013).

    Article  Google Scholar 

  7. Bischoff, T. & Schneider, T. Energetic constraints on the position of the intertropical convergence zone. J. Clim. 27, 4937–4951 (2014).

    Article  Google Scholar 

  8. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    Article  Google Scholar 

  9. McGee, D., Donohoe, A., Marshall, J. & Ferreira, D. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth Planet. Sci. Lett. 390, 69–79 (2014).

    Article  Google Scholar 

  10. Adam, O., Bischoff, T. & Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Clim. 29, 7281–7293 (2016).

    Article  Google Scholar 

  11. Jolly, D. et al. Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years. J. Biogeogr. 25, 1007–1027 (1998).

    Article  Google Scholar 

  12. Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dynam. 37, 775–802 (2011).

    Article  Google Scholar 

  13. Perez-Sanz, A., Li, G., Gonzalez-Samperiz, P. & Harrison, S. P. Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations. Clim. Past 10, 551–568 (2014).

    Article  Google Scholar 

  14. Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).

    Article  Google Scholar 

  15. Harrison, S. P. et al. Climate model benchmarking with glacial and mid-Holocene climates. Clim. Dynam. 43, 671–688 (2014).

    Article  Google Scholar 

  16. Harrison, S. P. et al. Intercomparison of simulated global vegetation distributions in response to 6 kyr BP orbital forcing. J. Clim. 11, 2721–2742 (1998).

    Article  Google Scholar 

  17. Joussaume, S. et al. Monsoon changes for 6000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys. Res. Lett. 26, 859–862 (1999).

    Article  Google Scholar 

  18. Bonfils, C., De Noblet-Ducoudré, N. D., Braconnot, P. & Joussaumeu, S. Hot desert albedo and climate change: mid-Holocene monsoon in North Africa. J. Clim. 14, 3724–3737 (2001).

    Article  Google Scholar 

  19. Levis, S., Bonan, G. B. & Bonfils, C. Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Clim. Dynam. 23, 791–802 (2004).

    Article  Google Scholar 

  20. Su, H. & Neelin, J. D. Dynamical mechanisms for African monsoon changes during the mid-Holocene. J. Geophys. Res. 110, 19105 (2005).

    Article  Google Scholar 

  21. Skinner, C. B. & Poulsen, C. J. The role of fall season tropical plumes in enhancing Saharan rainfall during the African Humid Period. Geophys. Res. Lett. 43, 349–358 (2016).

    Article  Google Scholar 

  22. Swann, A. L. S., Fung, I. Y., Liu, Y. & Chiang, J. C. H. Remote vegetation feedbacks and the mid-Holocene green Sahara. J. Clim. 27, 4857–4870 (2014).

    Article  Google Scholar 

  23. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  24. Boos, W. R. Thermodynamic scaling of the hydrological cycle of the last glacial maximum. J. Clim. 25, 992–1006 (2012).

    Article  Google Scholar 

  25. Clement, A. C., Hall, A. & Broccoli, A. J. The importance of precessional signals in the tropical climate. Clim. Dynam. 22, 327–341 (2004).

    Article  Google Scholar 

  26. Trenberth, K. E., Stepaniak, D. P. & Caron, J. M. Interannual variations in the atmospheric heat budget. J. Geophys. Res. 107, 4066 (2002).

    Article  Google Scholar 

  27. Mayer, M., Trenberth, K. E., Haimberger, L. & Fasullo, J. T. The response of tropical atmospheric energy budgets to ENSO. J. Clim. 26, 4710–4724 (2013).

    Article  Google Scholar 

  28. Mayer, M., Haimberger, L. & Balmaseda, M. A. On the energy exchange between tropical ocean basins related to ENSO. J. Clim. 27, 6393–6403 (2014).

    Article  Google Scholar 

  29. Seager, R. & Henderson, N. Diagnostic computation of moisture budgets in the ERA-interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Clim. 26, 7876–7901 (2013).

    Article  Google Scholar 

  30. Peters, M. E., Kuang, Z. & Walker, C. C. Analysis of atmospheric energy transport in ERA-40 and implications for simple models of the mean tropical circulation. J. Clim. 21, 5229–5241 (2008).

    Article  Google Scholar 

  31. Back, L. E. & Bretherton, C. S. Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett. 33, 1–5 (2006).

    Article  Google Scholar 

  32. Shekhar, R. & Boos, W. R. Improving energy-based estimates of monsoon location in the presence of proximal deserts. J. Clim. 29, 4741–4761 (2016).

    Article  Google Scholar 

  33. Braconnot, P., Marti, O., Joussaume, S. & Leclainche, Y. Ocean feedback in response to 6 kyr BP Insolation. J. Clim. 13, 1537–1553 (2000).

    Article  Google Scholar 

  34. Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Clim. 16, 406–425 (2003).

    Article  Google Scholar 

  35. Hsu, Y. H., Chou, C. & Wei, K. Y. Land-ocean asymmetry of tropical precipitation changes in the mid-Holocene. J. Clim. 23, 4133–4151 (2010).

    Article  Google Scholar 

  36. Merlis, T. M., Schneider, T., Bordoni, S. & Eisenman, I. Hadley circulation response to orbital precession. Part II: Subtropical continent. J. Clim. 26, 754–771 (2013).

    Article  Google Scholar 

  37. Hwang, Y. T. & Frierson, D. M. W. Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett. 37, L24807 (2010).

    Google Scholar 

  38. Kiehl, J. T. On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Clim. 7, 559–565 (1994).

    Article  Google Scholar 

  39. Behling, H., Arz, H. W., Pätzold, J. & Wefer, G. Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB 3104-1. Quat. Sci. Rev. 19, 981–994 (2000).

    Article  Google Scholar 

  40. Ramanathan, V. et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

    Article  Google Scholar 

  41. Robock, A., Mu, M., Vinnikov, K. & Robinson, D. Land surface conditions over Eurasia and Indian summer monsoon rainfall. J. Geophys. Res. 108, 4131 (2003).

    Article  Google Scholar 

  42. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  43. Trenberth, K. E. Using atmospheric budgets as a constraint on surface fluxes. J. Clim. 10, 2796–2809 (1997).

    Article  Google Scholar 

  44. Trenberth, K. E., Caron, J. M. & Stepaniak, D. P. The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim. Dynam. 17, 259–276 (2001).

    Article  Google Scholar 

  45. Xie, P. & Arkin, P. A. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Clim. 9, 840–858 (1996).

    Article  Google Scholar 

  46. Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

    Article  Google Scholar 

  47. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    Article  Google Scholar 

  48. Jammalamadaka, S. R. & SenGupta, A. Topics in Circular Statistics (World Scientific Publishing Co. Pte. Ltd, 2001).

    Book  Google Scholar 

  49. Li, Z. & Garand, L. Estimation of surface albedo from space: a parameterization for global application. J. Geophys. Res. 99, 8335–8350 (1994).

    Article  Google Scholar 

  50. Chen, T. S. & Ohring, G. On the relationship between clear-sky planetary and surface albedos. J. Atmos. Sci. 41, 156–158 (1984).

    Article  Google Scholar 

  51. Fu, Q., Liou, K. N., Cribb, M. C., Charlock, T. P. & Grossman, A. Multiple scattering parameterization in thermal infrared radiative transfer. J. Atmos. Sci. 54, 2799–2812 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

W.R.B. was supported by National Science Foundation (NSF) grants AGS-1253222 and AGS-1515960, and by Office of Naval Research grant N00014-15-1-2531. R.L.K. was supported by NSF grant AGS-1064013. W.R.B. thanks D. McGee and M. Biasutti for helpful discussions, and A. Voigt and A. Donohoe for comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.R.B. conceived the study, devised and applied the theory to the PMIP models and observational data, and integrated and analysed the idealized model described in the Supplementary Information. R.L.K. analysed the PMIP data, and both authors contributed to writing the manuscript and interpreting results.

Corresponding author

Correspondence to William R. Boos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1091 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boos, W., Korty, R. Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nature Geosci 9, 892–897 (2016). https://doi.org/10.1038/ngeo2833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing