Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A key role for green rust in the Precambrian oceans and the genesis of iron formations

Abstract

Iron formations deposited in marine settings during the Precambrian represent large sinks of iron and silica, and have been used to reconstruct environmental conditions at the time of their formation. However, the observed mineralogy in iron formations, which consists of iron oxides, silicates, carbonates and sulfides, is generally thought to have arisen from diagenesis of one or more mineral precursors. Ferric iron hydroxides and ferrous carbonates and silicates have been identified as prime candidates. Here we investigate the potential role of green rust, a ferrous–ferric hydroxy salt, in the genesis of iron formations. Our laboratory experiments show that green rust readily forms in early seawater-analogue solutions, as predicted by thermodynamic calculations, and that it ages into minerals observed in iron formations. Dynamic models of the iron cycle further indicate that green rust would have precipitated near the iron redoxcline, and it is expected that when the green rust sank it transformed into stable phases within the water column and sediments. We suggest, therefore, that the precipitation and transformation of green rust was a key process in the iron cycle, and that the interaction of green rust with various elements should be included in any consideration of Precambrian biogeochemical cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermodynamic stability of iron-bearing minerals in ‘early seawater’.
Figure 2: Green rust and its ageing products.
Figure 3: Sensitivity of iron sink to model parameters.

Similar content being viewed by others

References

  1. Bekker, A. et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, and biospheric processes. Econ. Geol. 105, 467–508 (2010).

    Article  Google Scholar 

  2. Klein, C. Some Precambrian banded-iron formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 90, 1473–1499 (2005).

    Article  Google Scholar 

  3. Cloud, P. Paleoecological significance of the banded iron formation. Econ. Geol. 68, 1135–1143 (1973).

    Article  Google Scholar 

  4. Walker, J. C. G. Suboxic diagenesis in banded iron formations. Nature 309, 340–342 (1984).

    Article  Google Scholar 

  5. Fischer, W. W. & Knoll, A. H. An iron shuttle for deepwater silica in Late Archean and early Proterozoic iron formations. Geol. Soc. Am. Bull. 121, 222–235 (2008).

    Google Scholar 

  6. Kappler, A., Pasquero, C., Konhauser, K. O. & Newmanm, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868 (2005).

    Article  Google Scholar 

  7. Cairns-Smith, A. G. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 276, 807–808 (1978).

    Article  Google Scholar 

  8. Rasmussen, B., Krapež, B. & Meier, D. B. Replacement origin for hematite in 2.5 Ga banded iron formation: evidence for postdepositional oxidation of iron-bearing minerals. Geol. Soc. Am. Bull. 126, 438–446 (2014).

    Article  Google Scholar 

  9. Rasmussen, B., Krapež, B. & Muhling, J. R. Hematite replacement of iron-bearing precursor sediments in the 3.46-b. y.-old Marble Bar Chert, Pilbara craton, Australia. Geol. Soc. Am. Bull. 126, 1245–1258 (2014).

    Article  Google Scholar 

  10. Trolard, F., Bourrié, G., Abdelmoula, M., Refait, P. & Feder, F. Fougerite, a new mineral of the pyroaurite-iowaite group: description and crystal structure. Clays Clay Miner. 3, 323–334 (2007).

    Article  Google Scholar 

  11. Refait, P., Memet, J.-B., Bon, C., Sabot, R. & Génin, J.-M. R. Formation of the Fe(II)-Fe(III) hydroxysulfate green rust during marine corrosion of steel. Corros. Sci. 45, 833–845 (2003).

    Article  Google Scholar 

  12. Legrand, L., Mazerolles, L. & Chaussé, A. Oxidation of carbonate green rust into ferric phases: solid-state reaction or transformation via solution. Geochim. Cosmochim. Acta 68, 3497–3507 (2004).

    Article  Google Scholar 

  13. Génin, J.-M. R., Ruby, C., Géhin, A. & Refait, P. Synthesis of green rusts by oxidation of Fe(OH)2, their products of oxidation and reduction of ferric oxyhydroxides: Eh-pH Pourbaix diagrams. C. R. Geosci. 338, 433–446 (2006).

    Article  Google Scholar 

  14. Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).

    Article  Google Scholar 

  15. Wiesli, R. A., Beard, B. L. & Johnson, C. M. Experimental determination and Fe isotope fractionation between Fe(II), siderite and “green rust” in abiotic systems. Chem. Geol. 211, 343–362 (2004).

    Article  Google Scholar 

  16. Halevy, I. & Schrag, D. P. Sulfur dioxide inhibits calcium carbonate precipitation: implications for Mars and Earth. Geophys. Res. Lett. 36, L23201 (2009).

    Article  Google Scholar 

  17. Beukes, N. J., Klein, C., Kaufman, A. J. & Hayes, J. M. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron formation deposition, transvaal supergroup, South Africa. Bull. Soc. Econ. Geol. 85, 663–690 (1990).

    Article  Google Scholar 

  18. Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 128, 511–530 (2015).

    Article  Google Scholar 

  19. Bruno, J., Wersin, P. & Stumm, W. On the influence of carbonate in mineral dissolution: II. The solubility of FeCO3 (s) at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 56, 1149–1155 (1992).

    Article  Google Scholar 

  20. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9872 (1981).

    Article  Google Scholar 

  21. Grotzinger, J. P. & Kasting, J. F. New constraints on Precambrian ocean composition. J. Geol. 101, 235–243 (1993).

    Article  Google Scholar 

  22. Ona-Nguema, G. et al. Iron(II, III) hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction. Environ. Sci. Tech. 36, 16–20 (2002).

    Article  Google Scholar 

  23. Tamaura, Y. Ferrite formation from the intermediate, green rust II, in the transformation of γ-FeO(OH) in aqueous suspension. Inorg. Chem. 24, 4363–4366 (1985).

    Article  Google Scholar 

  24. Kwon, S.-K. et al. Influence of silicate ions on the formation of goethite from green rust in aqueous solution. Corros. Sci. 49, 2946–2961 (2007).

    Article  Google Scholar 

  25. Hansen, C. R. H. & Poulsen, I. F. Interaction of synthetic sulphate “green rust” with phosphate and the crystallization of vivianite. Clays Clay Miner. 47, 312–318 (1999).

    Article  Google Scholar 

  26. Bachan, A. & Kump, L. R. The rise of oxygen and siderite oxidation during the Lomagundi Event. Proc. Natl. Acad. Sci. USA 112, 6562–6567 (2015).

    Article  Google Scholar 

  27. O’Loughlin, E. J., Kelly, S. D., Cook, R. E., Csencsits, R. & Kemner, K. M. Reduction of uranium(VI) by mixed iron(II)/Iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environ. Sci. Technol. 37, 721–727 (2003).

    Article  Google Scholar 

  28. Loyaux-Lawniczak, S., Refait, P., Ehrhardt, J.-J., Lecomte, P. & Génin, J.-M. R. Trapping of Cr by the formation of ferrihydrite during the reduction of chromate ions by Fe(II)—Fe(III) hydroxysalt green rusts. Environ. Sci. Technol. 34, 438–443 (2000).

    Article  Google Scholar 

  29. Refait, P., Drissi, H., Marie, Y. & Génin, J.-M. R. The substitution of Fe2+ ions by Ni2+ ions in green rust one compounds. Hyperfine Interact. 90, 389–394 (1994).

    Article  Google Scholar 

  30. Rowe, C. D. & Wing, B. A. Physical sedimentology constrains the primary precipitates in banded iron formations. Goldschmidt abstract. 2701 (2015).

  31. Bethke, C. Geochemical and Biogeochemical Reaction Modeling (Cambridge Press, 2008).

    Google Scholar 

  32. Johnson, J. W., Oelkers, E. H. & Hegelson, H. C. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput. Geosci. 18, 899–947 (1992).

    Article  Google Scholar 

  33. Tosca, N. J. et al. Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 240, 122–148 (2005).

    Article  Google Scholar 

  34. Rickard, D. & Luther, G. W. III. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).

    Article  Google Scholar 

  35. von Paris, P. et al. Warming the early Earth—CO2 reconsidered. Planet. Space Sci. 56, 1244–1259 (2008).

    Article  Google Scholar 

  36. Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739.

    Article  Google Scholar 

  37. Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 65, 3265–3273 (1992).

    Article  Google Scholar 

  38. Drissi, S. H., Refait, Ph., Abdelmoula, M. & Génin, J. M. R. The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corros. Sci. 37, 2015–2041 (1995).

    Article  Google Scholar 

  39. Haynes, W. M. CRC Handbook of Chemistry and Physics 97 edn (CRC Press, 2016).

    Book  Google Scholar 

  40. Parker, V. B. & Khodakovskii, I. L. Thermodynamic properties of the aqueous ions (2 + and 3 +) of iron and the key compounds of iron. J. Phys. Chem. Ref. Data 24, 1699–1745 (1995).

    Article  Google Scholar 

  41. Refait, Ph. & Génin, J. M. R. The transformation of chloride-containing green rust into sulphated green rust two by oxidation in mixed Cl and SO42− aqueous media. Corros. Sci. 36, 55–65 (1994).

    Article  Google Scholar 

  42. Olowe, A. A. & Génin, J. M. R. in Corrosion Science and Engineering: Proceedings of an International Symposium in honour of Marcel Pourbaix’s 85th Birthday Vol. 158 (eds Rapp, R. A., Gocken, N. A. & Pourbaix, A.) RT 297 (Rapports Techniques CEBELCOR, 1989).

    Google Scholar 

  43. Gayer, K. H. & Wootner, L. The hydrolysis of ferrous chloride at 25°. J. Am. Chem. Soc. 78, 3944–3946 (1956).

    Article  Google Scholar 

  44. Downs, R. T. The RRUFF Project: An Integrated Study of the Chemistry, Crystallography, Raman and Infrared Spectroscopy of Minerals (19th General Meeting of the International Mineralogical Association, 2006).

    Google Scholar 

  45. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  46. Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000).

    Article  Google Scholar 

  47. Millero, F. J., Sotolongo, S. & Izaguirre, M. The oxidation kinetics of Fe(II) in seawater. Geochim. Cosmochim. Acta 51, 793–801 (1987).

    Article  Google Scholar 

  48. Druschel, G. K., Emerson, D., Sutka, R., Suchecki, P. & Luther, G. W. III Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 72, 3358–3370 (2008).

    Article  Google Scholar 

  49. Anbar, A. D. & Holland, H. D. The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim. Acta 56, 2595–2603 (1992).

    Article  Google Scholar 

  50. Hotinski, R. M., Kump, L. R. & Najjar, R. G. Opening Pandora’s Box: the impact of open system modeling on interpretations of anoxia. Paleoceanography 15, 267–279 (2000).

    Article  Google Scholar 

  51. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106, 1373–1399 (2001).

    Article  Google Scholar 

  52. Kump, L. R. Jr & Seyfried, W. E. Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Tosca for valuable comments. I.H. acknowledges funding from a European Research Council Starting Grant 337183, and an Israeli Science Foundation Grant 764/12. I.H. is the incumbent of the Anna and Maurice Boukstein Career Development Chair at the Weizmann Institute of Science. Electron microscopy was carried out at the Moskowitz Center for Nano and Bio-Nano Imaging.

Author information

Authors and Affiliations

Authors

Contributions

I.H. designed and supervised the research, performed the thermodynamic calculations, developed and analysed the dynamic model, and wrote the paper. M.A., I.H. and E.M.S. performed the experiments and analysed the products. R.P.-B. and Y.F. assisted with analyses.

Corresponding author

Correspondence to I. Halevy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 550 kb)

Supplementary Information

Supplementary Information (PDF 6893 kb)

Supplementary Information

Supplementary Information (PDF 7708 kb)

Supplementary Information

Supplementary Information (PDF 5442 kb)

Supplementary Information

Supplementary Information (XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halevy, I., Alesker, M., Schuster, E. et al. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geosci 10, 135–139 (2017). https://doi.org/10.1038/ngeo2878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing