Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epithelial glycosylation in gut homeostasis and inflammation

Abstract

Intestinal epithelial cells apically express glycans, especially α1,2-fucosyl linkages, which work as a biological interface for the host–microbe interaction. Emerging studies have shown that epithelial α1,2-fucosylation is regulated by microbes and by group 3 innate lymphoid cells (ILC3s). Dysregulation of the gene (FUT2) encoding fucosyltransferase 2, an enzyme governing epithelial α1,2-fucosylation, is associated with various human disorders, including infection and chronic inflammatory diseases. This suggests a critical role for an interaction between microbes, epithelial cells and ILC3s mediated via glycan residues. In this Review, using α1,2-fucose and Fut2 gene expression as an example, we describe how epithelial glycosylation is controlled by immune cells and luminal microbes. We also address the pathophysiological contribution of epithelial α1,2-fucosylation to pathogenic and commensal microbes as well as the potential of α1,2-fucose and its regulatory pathway as previously unexploited targets in the development of new therapeutic approaches for human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intestinal epithelial α1,2-fucose synthesized by fucosyltransferases is a symbiotic molecule between host and microbes.
Figure 2: Intestinal epithelial α1,2-fucosylation is regulated by bacterial signals and immune cells.
Figure 3: Biological trade-off mediated by epithelial α1,2-fucose.

Similar content being viewed by others

References

  1. Goto, Y. & Kiyono, H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol. Rev. 245, 147–163 (2012).

    CAS  PubMed  Google Scholar 

  2. Marchiando, A.M., Graham, W.V. & Turner, J.R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. 5, 119–144 (2010).

    CAS  PubMed  Google Scholar 

  3. Johansson, M.E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 105, 15064–15069 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Porter, E.M., van Dam, E., Valore, E.V. & Ganz, T. Broad-spectrum antimicrobial activity of human intestinal defensin 5. Infect. Immun. 65, 2396–2401 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Salzman, N.H., Ghosh, D., Huttner, K.M., Paterson, Y. & Bevins, C.L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).

    CAS  PubMed  Google Scholar 

  6. Cash, H.L., Whitham, C.V., Behrendt, C.L. & Hooper, L.V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaishnava, S. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurashima, Y., Goto, Y. & Kiyono, H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur. J. Immunol. 43, 3108–3115 (2013).

    CAS  PubMed  Google Scholar 

  9. Goto, Y. & Ivanov, I.I. Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol. Cell Biol. 91, 204–214 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381–393 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Honda, K. & Littman, D.R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Caballero, S. & Pamer, E.G. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annu. Rev. Immunol. 33, 227–256 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Pham, T.A. et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 16, 504–516 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pickard, J.M. et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Aigal, S., Claudinon, J. & Römer, W. Plasma membrane reorganization: A glycolipid gateway for microbes. Biochim. Biophys. Acta 1853, 858–871 (2015).

    CAS  PubMed  Google Scholar 

  19. Imai, M. & Kawaoka, Y. The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr. Opin. Virol. 2, 160–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marionneau, S. et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122, 1967–1977 (2002).

    CAS  PubMed  Google Scholar 

  21. Ohtsubo, K. & Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    CAS  PubMed  Google Scholar 

  22. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    CAS  PubMed  Google Scholar 

  23. Pinho, S.S. & Reis, C.A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    CAS  PubMed  Google Scholar 

  24. Terahara, K. et al. Distinct fucosylation of M cells and epithelial cells by Fut1 and Fut2, respectively, in response to intestinal environmental stress. Biochem. Biophys. Res. Commun. 404, 822–828 (2011).

    CAS  PubMed  Google Scholar 

  25. Moran, A.P., Gupta, A. & Joshi, L. Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412–1425 (2011).

    CAS  PubMed  Google Scholar 

  26. Fukuoka, S., Freedman, S.D. & Scheele, G.A. A single gene encodes membrane-bound and free forms of GP-2, the major glycoprotein in pancreatic secretory (zymogen) granule membranes. Proc. Natl. Acad. Sci. USA 88, 2898–2902 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009).

    CAS  PubMed  Google Scholar 

  28. Blondel, C.J. et al. CRISPR/Cas9 screens reveal requirements for host cell sulfation and fucosylation in bacterial type III secretion system-mediated cytotoxicity. Cell Host Microbe 20, 226–237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma, B., Simala-Grant, J.L. & Taylor, D.E. Fucosylation in prokaryotes and eukaryotes. Glycobiology 16, 158R–184R (2006).

    CAS  PubMed  Google Scholar 

  30. Becker, D.J. & Lowe, J.B. Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R (2003).

    CAS  PubMed  Google Scholar 

  31. Domino, S.E., Hiraiwa, N. & Lowe, J.B. Molecular cloning, chromosomal assignment and tissue-specific expression of a murine alpha(1,2)fucosyltransferase expressed in thymic and epididymal epithelial cells. Biochem. J. 327, 105–115 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Domino, S.E., Zhang, L. & Lowe, J.B. Molecular cloning, genomic mapping, and expression of two Secretor blood group a (1,2)fucosyltransferase genes differentially regulated in mouse uterine epithelium and gastrointestinal tract. J. Biol. Chem. 276, 23748–23756 (2001).

    CAS  PubMed  Google Scholar 

  33. Rouquier, S. et al. Molecular cloning of a human genomic region containing the H blood group a(1,2)fucosyltransferase gene and two H locus-related DNA restriction fragments. Isolation of a candidate for the human Secretor blood group locus. J. Biol. Chem. 270, 4632–4639 (1995).

    CAS  PubMed  Google Scholar 

  34. Avent, N.D. Human erythrocyte antigen expression: its molecular bases. Br. J. Biomed. Sci. 54, 16–37 (1997).

    CAS  PubMed  Google Scholar 

  35. Hoskins, L.C. The ABO blood group antigens and their secretion by healthy and diseased gastric mucosa. Ann. NY Acad. Sci. 140, 848–865 (1967).

    CAS  PubMed  Google Scholar 

  36. Kelly, R.J., Rouquier, S., Giorgi, D., Lennon, G.G. & Lowe, J.B. Sequence and expression of a candidate for the human Secretor blood group a(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem. 270, 4640–4649 (1995).

    CAS  PubMed  Google Scholar 

  37. Michalski, J.C. & Klein, A. Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim. Biophys. Acta 1455, 69–84 (1999).

    CAS  PubMed  Google Scholar 

  38. Comstock, L.E. & Kasper, D.L. Bacterial glycans: key mediators of diverse host immune responses. Cell 126, 847–850 (2006).

    CAS  PubMed  Google Scholar 

  39. Coyne, M.J., Reinap, B., Lee, M.M. & Comstock, L.E. Human symbionts use a host-like pathway for surface fucosylation. Science 307, 1778–1781 (2005).

    CAS  PubMed  Google Scholar 

  40. Hooper, L.V., Xu, J., Falk, P.G., Midtvedt, T. & Gordon, J.I. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96, 9833–9838 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kashyap, P.C. et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc. Natl. Acad. Sci. USA 110, 17059–17064 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J. 8, 2193–2206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pacheco, A.R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Umesaki, Y. & Ohara, M. Factors regulating the expression of the neutral glycolipids in the mouse small intestinal mucosa. Biochim. Biophys. Acta 1001, 163–168 (1989).

    CAS  PubMed  Google Scholar 

  45. Engevik, M.A. et al. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G697–G711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bry, L., Falk, P.G., Midtvedt, T. & Gordon, J.I. A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 1380–1383 (1996).

    CAS  PubMed  Google Scholar 

  47. Nanthakumar, N.N., Dai, D., Newburg, D.S. & Walker, W.A. The role of indigenous microflora in the development of murine intestinal fucosyl- and sialyltransferases. FASEB J. 17, 44–46 (2003).

    CAS  PubMed  Google Scholar 

  48. Hooper, L.V., Bry, L., Falk, P.G. & Gordon, J.I. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays 20, 336–343 (1998).

    CAS  PubMed  Google Scholar 

  49. Nanthakumar, N.N., Meng, D. & Newburg, D.S. Glucocorticoids and microbiota regulate ontogeny of intestinal fucosyltransferase 2 requisite for gut homeostasis. Glycobiology 23, 1131–1141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, Z. et al. Mucosal gene expression profiles following the colonization of immunocompetent defined-flora C3H mice with Helicobacter bilis: a prelude to typhlocolitis. Microbes Infect. 11, 374–383 (2009).

    CAS  PubMed  Google Scholar 

  51. Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 12, 941–948 (2011).

    CAS  PubMed  Google Scholar 

  52. Tumanov, A.V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 44–53 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kinnebrew, M.A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276–287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  55. Goto, Y. et al. IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut. Sci. Rep. 5, 15918 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sawa, S. et al. RORgt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12, 320–326 (2011).

    CAS  PubMed  Google Scholar 

  57. Hurd, E.A. & Domino, S.E. Increased susceptibility of secretor factor gene Fut2-null mice to experimental vaginal candidiasis. Infect. Immun. 72, 4279–4281 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chessa, D., Winter, M.G., Nuccio, S.P., Tükel, C. & Bäumler, A.J. RosE represses Std fimbrial expression in Salmonella enterica serotype Typhimurium. Mol. Microbiol. 68, 573–587 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Magalhães, A. et al. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 19, 1525–1536 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. Magalhães, A. & Reis, C.A. Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz. J. Med. Biol. Res. 43, 611–618 (2010).

    PubMed  Google Scholar 

  61. Ruiz-Palacios, G.M., Cervantes, L.E., Ramos, P., Chavez-Munguia, B. & Newburg, D.S. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1,2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112–14120 (2003).

    CAS  PubMed  Google Scholar 

  62. Blackwell, C.C. et al. Non-secretion of ABO antigens predisposing to infection by Neisseria meningitidis and Streptococcus pneumoniae. Lancet 2, 284–285 (1986).

    CAS  PubMed  Google Scholar 

  63. Blackwell, C.C., Jonsdottir, K., Hanson, M.F. & Weir, D.M. Non-secretion of ABO blood group antigens predisposing to infection by Haemophilus influenzae. Lancet 2, 687 (1986).

    CAS  PubMed  Google Scholar 

  64. Chaim, W., Foxman, B. & Sobel, J.D. Association of recurrent vaginal candidiasis and secretory ABO and Lewis phenotype. J. Infect. Dis. 176, 828–830 (1997).

    CAS  PubMed  Google Scholar 

  65. Sheinfeld, J., Schaeffer, A.J., Cordon-Cardo, C., Rogatko, A. & Fair, W.R. Association of the Lewis blood-group phenotype with recurrent urinary tract infections in women. N. Engl. J. Med. 320, 773–777 (1989).

    CAS  PubMed  Google Scholar 

  66. Stapleton, A., Nudelman, E., Clausen, H., Hakomori, S. & Stamm, W.E. Binding of uropathogenic Escherichia coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. J. Clin. Invest. 90, 965–972 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Koda, Y., Soejima, M. & Kimura, H. The polymorphisms of fucosyltransferases. Leg. Med. (Tokyo) 3, 2–14 (2001).

    CAS  Google Scholar 

  68. Liu, Y. et al. Extensive polymorphism of the FUT2 gene in an African (Xhosa) population of South Africa. Hum. Genet. 103, 204–210 (1998).

    CAS  PubMed  Google Scholar 

  69. Svensson, L., Petersson, A. & Henry, S.M. Secretor genotyping for A385T, G428A, C571T, C628T, 685delTGG, G849A, and other mutations from a single PCR. Transfusion 40, 856–860 (2000).

    CAS  PubMed  Google Scholar 

  70. Koda, Y., Soejima, M., Liu, Y. & Kimura, H. Molecular basis for secretor type a(1,2)-fucosyltransferase gene deficiency in a Japanese population: a fusion gene generated by unequal crossover responsible for the enzyme deficiency. Am. J. Hum. Genet. 59, 343–350 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu, L.C. et al. Correlation of a missense mutation in the human Secretor α1,2-fucosyltransferase gene with the Lewis(a+b+) phenotype: a potential molecular basis for the weak Secretor allele (Sew). Biochem. J. 312, 329–332 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McGovern, D.P. et al. Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. Hum. Mol. Genet. 19, 3468–3476 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Aghdassi, A.A., Weiss, F.U., Mayerle, J., Lerch, M.M. & Simon, P. Genetic susceptibility factors for alcohol-induced chronic pancreatitis. Pancreatology 15 (Suppl.), S23–S31 (2015).

    CAS  PubMed  Google Scholar 

  75. Folseraas, T. et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J. Hepatol. 57, 366–375 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ishitoya, S., Yamamoto, S., Mitsumori, K., Ogawa, O. & Terai, A. Non-secretor status is associated with female acute uncomplicated pyelonephritis. BJU Int. 89, 851–854 (2002).

    CAS  PubMed  Google Scholar 

  77. Smyth, D.J. et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 60, 3081–3084 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang, H. et al. A large-scale screen for coding variants predisposing to psoriasis. Nat. Genet. 46, 45–50 (2014).

    CAS  PubMed  Google Scholar 

  79. Xavier, J.M. et al. FUT2: filling the gap between genes and environment in Behçet's disease? Ann. Rheum. Dis. 74, 618–624 (2015).

    CAS  PubMed  Google Scholar 

  80. Xavier, R.J. & Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    CAS  PubMed  Google Scholar 

  81. Miyoshi, J. et al. Ectopic expression of blood type antigens in inflamed mucosa with higher incidence of FUT2 secretor status in colonic Crohn's disease. J. Gastroenterol. 46, 1056–1063 (2011).

    CAS  PubMed  Google Scholar 

  82. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl. Acad. Sci. USA 108, 19030–19035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wacklin, P. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6, e20113 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lewis, Z.T. et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3, 13 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Smilowitz, J.T. et al. The human milk metabolome reveals diverse oligosaccharide profiles. J. Nutr. 143, 1709–1718 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rayes, A. et al. A genetic modifier of the gut microbiome influences the risk of graft-versus-host-disease and bacteremia following hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. http://dx.doi.org/10.1016/j.bbmt.2015.11.017 (2015).

  87. Azevedo, M. et al. Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J. Pathol. 215, 308–316 (2008).

    CAS  PubMed  Google Scholar 

  88. Borén, T., Falk, P., Roth, K.A., Larson, G. & Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993).

    PubMed  Google Scholar 

  89. Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).

    CAS  PubMed  Google Scholar 

  90. Imbert-Marcille, B.M. et al. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype. J. Infect. Dis. 209, 1227–1230 (2014).

    CAS  PubMed  Google Scholar 

  91. Kambhampati, A., Payne, D.C., Costantini, V. & Lopman, B.A. Host genetic susceptibility to enteric viruses: a systematic review and metaanalysis. Clin. Infect. Dis. http://dx.doi.org/10.1093/cid/civ873 (2015).

  92. Payne, D.C. et al. Epidemiologic association between FUT2 secretor status and severe rotavirus gastroenteritis in children in the United States. JAMA Pediatr. 169, 1040–1045 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Günaydın, G., Nordgren, J., Sharma, S. & Hammarström, L. Association of elevated rotavirus-specific antibody titers with HBGA secretor status in Swedish individuals: the FUT2 gene as a putative susceptibility determinant for infection. Virus Res. 211, 64–68 (2016).

    PubMed  Google Scholar 

  94. Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A. & Setoyama, H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39, 555–562 (1995).

    CAS  PubMed  Google Scholar 

  95. Hooper, L.V. Do symbiotic bacteria subvert host immunity? Nat. Rev. Microbiol. 7, 367–374 (2009).

    CAS  PubMed  Google Scholar 

  96. Katayama, T. et al. Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J. Bacteriol. 186, 4885–4893 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rodríguez-Díaz, J., Carbajo, R.J., Pineda-Lucena, A., Monedero, V. & Yebra, M.J. Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using a-L-fucosidases from Lactobacillus casei. Appl. Environ. Microbiol. 79, 3847–3850 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency (JSPS; to H.K.); a Grant-in-Aid for Scientific Research on Innovative Areas (Homeostatic regulation by various types of cell death) (15H01367 to S.U.); a Scientific Research (S) grant (23229004 to H.K.); a Research Activity Start-up grant (15H06159 to Y.G.); a Young Scientists (A) grant (16H06229 to Y.G.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; a Challenging Exploratory Research grant from the JSPS (to S.U.); a grant (Adjuvant database) from The Ministry of Health, Labor and Welfare (MHLW) and the Japan Agency for Medical Research and Development (AMED) (to S.U. and H.K.); The Uehara Memorial Foundation (to Y.G.); The Naito Foundation (to Y.G.); the Astellas Foundation for Research on Metabolic Disorders (to Y.G.); and the Takeda Science Foundation (to Y.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kiyono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, Y., Uematsu, S. & Kiyono, H. Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol 17, 1244–1251 (2016). https://doi.org/10.1038/ni.3587

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing