Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intraepithelial lymphocytes: exploring the Third Way in immunology

Abstract

Locally resident intraepithelial lymphocytes (IELs) are primarily T cells with potent cytolytic and immunoregulatory capacities, which they use to sustain epithelial integrity. Here, we consider that most IEL compartments comprise a variable mixture of two cell types: T cells primed to conventional antigen in the systemic compartment and T cells with ill-defined reactivities and origins, whose properties seem to place them mid-way between the adaptive and innate immune responses. We review the capacity of IELs to limit the dissemination of infectious pathogens and malignant cells and to control the infiltration of epithelial surfaces by systemic cells. An improved characterization of IELs would seem essential if we are to understand how immune responses and immunopathologies develop at body surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A hypothesis for the development of an epithelium-associated repertoire of autoreactive type b IELs.
Figure 2: A two-step model for IEL activation and IEL responses.
Figure 3: Interactions between IELs and target cells.

Similar content being viewed by others

References

  1. Giddens, A. The Third Way: The renewal of social democracy (Polity Press, Cambridge, 1998).

    Google Scholar 

  2. Weber, E. Uber den Mechanismus der Einsaugung des Speisesaftes beim Menschen und bei einigen tieren. Physiol. Wissenschaftliche Med. Archiv Anat. 400–402 (1847).

  3. Ferguson, A. Intraepithelial lymphocytes of the small intestine. Gut 18, 921–937 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ernst, P., Befus, A. & Bienenstock, J. Leukocytes in the intestinal epithelium: an unusual immunological compartment. Immunol. Today 6, 50–55 (1985).

    CAS  PubMed  Google Scholar 

  5. Klein, J. & Moseley, R. in Mucosal Immunology: Intraepithelial lymphocytes, advances in host defense mechanisms (eds Kiyono, H. & McGhee, J.) 33–60 (Raven Press, New York, 1993).

    Google Scholar 

  6. Beagley, K. & Husband, A. Intraepithelial lymphocytes: origins, distribution, and function. Crit. Rev. Immunol. 18, 237–254 (1998).

    CAS  PubMed  Google Scholar 

  7. Yoshikai, Y. The interaction of intestinal epithelial cells and intraepithelial lymphocytes in host defense. Immunol. Res. 20, 219–235 (1999).

    CAS  PubMed  Google Scholar 

  8. Fichtelius, K.-E. The mammalian equivalent to bursa Fabricii of birds. Exp. Cell Res. 46, 231–234 (1967).

    CAS  PubMed  Google Scholar 

  9. Guy-Grand, D., Griscelli, C. & Vassalli, P. The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur. J. Immunol. 4, 435–443 (1974).

    CAS  PubMed  Google Scholar 

  10. Meuwissen, S. et al. Analysis of the lympho-plasmacytic infiltrate in Crohn's disease with special reference to identification of lymphocyte subpopulations. Gut 17, 770–780 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guy-Grand, D., Griscelli, C. & Vassalli, P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J. Exp. Med. 148, 1661–1677 (1978).

    CAS  PubMed  Google Scholar 

  12. Davies, M. & Parrott, D. The early appearance of specific cytoxic T cells in murine gut mucosa. Clin. Exp. Immunol. 42, 273–279 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tagliabue, A., Befus, A., Clark, D. & Bienenstock, J. Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J. Exp. Med. 155, 1785–1796 (1982).

    CAS  PubMed  Google Scholar 

  14. Klein, J. & Kagnoff, M. Nonspecific recruitment of cytoxic effector cells in the intestinal mucosa of antigen primed mice. J. Exp. Med. 160, 1931–1936 (1984).

    CAS  PubMed  Google Scholar 

  15. Ernst, P., Clark, D., Rosenthal, K., Befus, A. & Bienenstock, J. Detection and characterization of cytotoxic T lymphocyte precursors in the murine intestinal intraepithelial leukocyte populations. J. Immunol. 136, 2121–2126 (1986).

    CAS  PubMed  Google Scholar 

  16. Klein, J. R. Ontogeny of the Thy-1-, Lyt-2+ murine intestinal intraepithelial lymphocyte. Characterization of a unique population of thymus-independent cytotoxic effector cells in the intestinal mucosa. J. Exp. Med. 164, 309–314 (1986).

    CAS  PubMed  Google Scholar 

  17. Viney, J., Kilshaw, P. & MacDonald, T. Cytotoxic αβ+ and γ/δ + T cells in murine intestinal epithelium. Eur. J. Immunol. 20, 1623–1626 (1990).

    CAS  PubMed  Google Scholar 

  18. Holtmeier, W. et al. The TCRδ repertoire in normal human skin is restricted and distinct from the TCRδ repertoire in the peripheral blood. J. Invest. Dermatol. 116, 275–280 (2001).

    CAS  PubMed  Google Scholar 

  19. Jarry, A., Cerf-Bensussan, N., Brousse, N., Seiz, F. & Guy-Grand, D. Subsets of CD3+ and CD3- lymphocytes isolated from normal human gut epithelium display phenotypic features different from their counterparts in peripheral blood. Eur. J. Immunol. 20, 1097–1103 (1990).

    CAS  PubMed  Google Scholar 

  20. Stingl, G. et al. Thy-1+ dendritic epidermal cells express T3 antigen and the T-cell receptor γ chain. Proc. Natl Acad. Sci. USA 84, 4586–4590 (1987).

    CAS  PubMed  Google Scholar 

  21. Asarnow, D. et al. Limited diversity of γ δ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55, 837–847 (1988).

    CAS  PubMed  Google Scholar 

  22. Itohara, S., Nakanish, N., Kanagawa, O., Kube, R. & Tonegawa, S. Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γ/δ T cells during thymic ontogeny and in peripheral lymphoid organs. Proc. Natl Acad. Sci. USA 86, 5094–5098 (1989).

    CAS  PubMed  Google Scholar 

  23. Lefrancois, L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol. 147, 1746–1751 (1991).

    CAS  PubMed  Google Scholar 

  24. Bucy, P., Chen, C. L., Cihak, J., Losch, U. & Cooper, M. Avian T cells expressing γ/δ receptors localize in the splenic sinusoids and the intestinal epithelium. J. Immunol. 141, 2200–2205 (1988).

    CAS  PubMed  Google Scholar 

  25. Goodman, T. & Lefrancois, L. Expression of the γ/δ T cell receptor on intestinal CD8(+) intraepithelial lymphocytes. Nature 333, 855–858 (1998).

    Google Scholar 

  26. Hayday, A. C. γδ cells: a right time and a right place for a conserved third way of protection. A. Rev. Immunol. 18, 975–1026 (2000).

    CAS  Google Scholar 

  27. Rudzik, O. & Bienenstock, J. Isolation and characteristics of gut mucosal lymphocytes. Lab. Invest. 30, 260–266 (1974).

    CAS  PubMed  Google Scholar 

  28. Mayrhofer, G. Thymus-dependent and thymus-independent subpopulations of intestinal intraepithelial lymphocytes: a granulated subpopulation of probable bone marrow origin. Blood 55, 532–535 (1980).

    CAS  PubMed  Google Scholar 

  29. Camerini, V., Panwala, C. & Kronenberg, M. Regional specialization of the mucosal immune system: intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine. J. Immunol. 151, 1756–1776 (1993).

    Google Scholar 

  30. Mosely, R. et al. Phenotype and TCR γ/δ variable gene repertoire of intestinal intraepithelial lymphocytes in wild mice (Mus musculus domesticus): abundance of Vγ1 transcripts and extensive δ gene diversity. Int. Immunol. 2, 231–238 (1994).

    Google Scholar 

  31. Fujiura, Y. et al. Development of CD8aa+ intestinal intraepithelial T cell in β2-microglobulin- and/or TAP-deficient mice. J. Immunol. 156, 2710–2715 (1996).

    CAS  PubMed  Google Scholar 

  32. Corazza, N., Muller, S., Brunner, T., Kagi, D. & Mueller, C. Differential contribution of Fas- and perforin-mediated mechanisms to the cell-mediated cytotoxic activity of naïve and in vivo-primed intestinal intraepithelial lymphocytes. J. Immunol. 164, 398–403 (2000).

    CAS  PubMed  Google Scholar 

  33. Taguchi, T. et al. Novel function for intestinal intraepithelial lymphocytes: murine CD3+, γ/δ TCR+ T cells produce IFN-γ and IL-5. J. Immunol. 147, 3736–3744 (1991).

    CAS  PubMed  Google Scholar 

  34. Barrett, T., Gajewski, T., Danielpour, D. & Chang, E. Differential function of intestinal intraepithelial lymphocyte subsets. J. Immunol. 149, 1124–1130 (1992).

    CAS  PubMed  Google Scholar 

  35. Chardes, T., Buzoni-Gatel, D., Lepage, A., Bernard, F. & Bout, D. Toxoplasma gondii oral infection induces specific cytoxic CD8α/β+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol. 153, 4596–4603 (1994).

    CAS  PubMed  Google Scholar 

  36. Lundqvist, C., Melgar, S., Yeung, M. M., Hammarstrom, S. & Hammarstrom, M. L. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. J. Immunol. 157, 1926–1934 (1996).

    CAS  PubMed  Google Scholar 

  37. Regnault, H., Cunano, H., Vassalli, P., Guy-Grand, D. & Kourilsky, P. Oligoclonal repertoire of the CD8α/α TCRα/β murine intestinal intraepithelial T lymphocytes evidence for random emergence of T cells. J. Exp. Med. 180, 1345–1358 (1994).

    CAS  PubMed  Google Scholar 

  38. Arstila, T. et al. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. J. Exp. Med. 191, 823–834 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nanno, M. et al. Development of intestinal intraepithelial T lymphocytes is independent of Peyer's patches and lymph nodes in aly mutant mice. J. Immunol. 153, 2014–2020 (1994).

    CAS  PubMed  Google Scholar 

  40. Marsh, M. Studies of intestinal lymphoid tissue. II. Aspects of proliferation and migration of epithelial lymphocytes in the small intestine of mice. Gut 16, 674–682 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Meader, R. & Landers, D. Electron and light microscopic observations on relationships between lymphocytes and intestinal epithelium. Am. J. Anat. 121, 763–774 (1967).

    CAS  PubMed  Google Scholar 

  42. Vezys, V., Olson, S. & Lefrancois, L. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. Immunity 12, 505–514 (2000).

    CAS  PubMed  Google Scholar 

  43. Guy-Grand, D., DiSanto, J., Henchez, P., Malassis-Seris, M. & Vassalli, P. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL12, IFNγ, TNF) in the induction of epithelial cell death and renewal. J. Immunol. 28, 730–744 (1998).

    CAS  Google Scholar 

  44. Camerini, V. et al. Generation of intestinal mucosal lymphocytes in scid mice reconstituted with mature, thymus-derived T cells. J. Immunol. 160, 2608–2618 (1998).

    CAS  PubMed  Google Scholar 

  45. Lefrancois, L. et al. The role of β7 integrins in CD8 T cell trafficking during an antiviral immune response. J. Exp. Med. 189, 1631–1638 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Umesaki, Y., Setoyama, H., Matsumoto, S., Imaoka, A. & Itoh, K. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect. Immun. 67, 3504–3511 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dharakul, T., Rott, L. & Greeenberg, H. B. Recovery from chronic rotavirus infection with mice with severe combined immunodeficiency: virus clearance mediated by adoptive transfer of immune CD8+ T lymphocytes. J. Virol. 64, 4375–4382 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lepage, A. C., Buzoni-Gatel, D., Bout, D. T. & Kasper, L. H. Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J. Immunol. 161, 4902–4908 (1998).

    CAS  PubMed  Google Scholar 

  49. Muller, S., Buhler-Jungo, M. & Mueller, C. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during and acute virus infection. J. Immunol. 164, 1986–1994 (2000).

    CAS  PubMed  Google Scholar 

  50. Buzoni-Gatel, D. et al. Intraepithelial lymphocytes traffic to the intestine and enhance resistance to Toxoplasma gondii oral infection. J. Immunol. 162, 5846–5852 (1999).

    CAS  PubMed  Google Scholar 

  51. Agace, W. W. et al. Human intestinal lamina propria and intraepithelial lymphocytes express receptors specific for chemokines induced by inflammation. Eur. J. Immunol. 30, 819–826 (2000).

    CAS  PubMed  Google Scholar 

  52. Kunkel, E. J. et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J. Exp. Med. 192, 761–767 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shibahara, T., Wilcox, J. N., Couse, T. & Madara, J. L. Characterization of epithelial chemoattractants for human intestinal intraepithelial lymphocytes. Gastroenterology 120, 60–70 (2001).

    CAS  PubMed  Google Scholar 

  54. Agace, W. W., Higgins, J. M., Sadasiven, B., Brenner, M. B. & Parker, C. M. T-lymphocyte-epithelial-cell interactions: integrin αE(CD103) β7, LEEP-CAM and chemokines. Curr. Opin. Cell Biol. 12, 563–568 (2000).

    CAS  PubMed  Google Scholar 

  55. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  56. Masopust, D., Jiang, J., Shen, H. & Lefrancois, L. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus Infection. J. Immunol. 166, 2348–2356 (2001).

    CAS  PubMed  Google Scholar 

  57. Slavin, R. & Santos, G. The graft versus host reaction in man after bone marrow transplantation: pathology, pathogenesis, clinical features, and implication. Clin. Immunol. Immunopathol. 1, 472–498 (1973).

    CAS  PubMed  Google Scholar 

  58. Mowat, A. & Ferguson, A. Intraepithelial lymphocyte count and crypt hyperplasia measure the mucosal component of the graft-versus-host reaction in mouse small intestine. Gastroenterology 83, 417–423 (1982).

    CAS  PubMed  Google Scholar 

  59. Rocha, B., Vassalli, P. & Guy-Grand, D. The Vβ repertoire of mouse gut homodimeric α CD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173, 483–486 (1991).

    CAS  PubMed  Google Scholar 

  60. Rocha, B., Vassalli, P. & Guy-Grand, D. Thymic and extrathymic origins of gut intraepithelial lymphocyte populations in mice. J. Exp. Med. 180, 681–686 (1994).

    CAS  PubMed  Google Scholar 

  61. Sydora, B., Brossay, I., Hagenbaugh, A., Kronenberg, M. & Cheroutre, H. TAP-independent selection of CD8+ intestinal intraepithelial lymphocytes. J. Immunol. 156, 4209–4216 (1996).

    CAS  PubMed  Google Scholar 

  62. Triebel, F. & Hercend, T. Subpopulations of human peripheral T γδ lymphocytes. Immunol. Today 10, 186–188 (1989).

    CAS  PubMed  Google Scholar 

  63. Deusch, K. et al. A major fraction of human intra-epithelial lymphocytes simultaneously expresses the γδ T cell receptor, the CD8 accessory molecule, and preferentially uses the Vδ1 gene segment. Eur. J. Immunol. 21, 1053–1059 (1991).

    CAS  PubMed  Google Scholar 

  64. Mosley, R., Wang, J., Hamad, M. & Klein, J. Functional heterogeneity of murine intestinal intraepithelial lymphocytes: studies using TCR-αβ+ IEL lines and fresh IEL isolates reveal multiple cytotoxic subsets differentiated by CD5, CD8α/α, and CD8α/β expression. Dev. Comp. Immunol. 18, 155–164 (1994).

    CAS  PubMed  Google Scholar 

  65. Ferguson, A. & Parrott, D. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin. Exp. Immunol. 12, 477–488 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ropke, C. & Everett, N. Kinetics of intraepithelial lymphocytes in the small intestine of thymus-deprived mice and antigen-deprived mice. Anat. Rec. 185, 101–108 (1976).

    CAS  PubMed  Google Scholar 

  67. MacDonald, T. & Ferguson, A. Small intestinal architecture and protozoal infection in mice. Gastroenterology 74, 496–500 (1978).

    CAS  PubMed  Google Scholar 

  68. Bandeira, A. et al. Localization of γδ T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

    CAS  PubMed  Google Scholar 

  69. Findly, R. C., Roberts, S. J. & Hayday, A. C. Dynamic response of murine gut intraepithelial T cells after infection by the coccidian parasite Eimeria. Eur. J. Immunol. 23, 2557–2564 (1993).

    CAS  PubMed  Google Scholar 

  70. Smith, A. L. & Hayday, A. C. An αβ T-cell-independent immunoprotective response towards gut coccidia is supported by γδ cells. Immunology 101, 325–332 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Janeway, C. A., Jones, B. & Hayday, A. Specificity and function of T cells bearing γ δ receptors. Immunol. Today 9, 73–76 (1988).

    PubMed  Google Scholar 

  72. Rocha, B., von Boehmer, H. & Guy-Grand, D. Selection of intraepithelial lymphocytes with CD8α/α co-receptors by self-antigen in the murine gut. Proc. Natl Acad. Sci. USA 89, 5336–5340 (1992).

    CAS  PubMed  Google Scholar 

  73. Poussier, P., Edouard, P., Lee, C., Binnie, M. & Julius, M. Thymus-independent development and negative selection of T cells expressing T cell receptor α/β in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med. 176, 187–199 (1992).

    CAS  PubMed  Google Scholar 

  74. Poussier, P. & Julius, M. Thymus-independent T cell development and selection in the intestinal epithelium. A. Rev. Immunol. 145, 521–553 (1994).

    Google Scholar 

  75. Lefrancois, L. & Olson, S. Cutting edge: reconsitution of the extrathymic intestinal T cell compartment in the absence of irradiation. J. Immunol. 159, 538–541 (1997).

    CAS  Google Scholar 

  76. Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit(+) IL-7R(+) Thy1(+) lympho-hempoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

    CAS  PubMed  Google Scholar 

  77. Laky, K. et al. Enterocyte expression of interleukin 7 induces development of γδ T cells and Peyer's patches. J. Exp. Med. 191, 1569–1580 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Dunon, D., Cooper, M. & Imhof, B. Thymic origin of embryonic intestinal γ/δ T cells. J. Exp. Med. 177, 257–263 (1993).

    CAS  PubMed  Google Scholar 

  79. Allison, J. & Havran, W. The immunobiology of T cells with invariant γ/δ antigen receptors. A. Rev. Immunol. 9, 679–705 (1991).

    CAS  Google Scholar 

  80. Lin, T. et al. Autospecific γ/δ thymocytes that escape negative selection find sanctuary in the intestine. J. Clin. Invest. 104, 1297–1305 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Guehler, S. R., Finch, R. J., Bluestone, J. A. & Barrett, T. A. Increased threshold for TCR-mediated signaling controls self reactivity of intraepithelial lymphocytes. J. Immunol. 160, 5341–5346 (1998).

    CAS  PubMed  Google Scholar 

  82. Park, S. H. et al. Selection and expansion of CD8α/α(+) T cell receptor α/β(+) intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and non-classical CD1 molecules. J. Exp. Med. 190, 885–890 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Das, G. & Janeway, C. A. Jr Development of CD8α/α and CD8α/β T cells in major histocompatibility complex class I-deficient mice. J. Exp. Med. 190, 881–884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Das, G. et al. Qa-2-dependent selection of CD8 α/α T cell receptor α/β(+) cells in murine intestinal intraepithelial lymphocytes. J. Exp. Med. 192, 1521–1528 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fragoso, G. et al. Increased resistance to Taenia crassiceps murine cysticercosis in Qa-2 transgenic mice. Infect. Immun. 66, 760–764 (1997).

    Google Scholar 

  86. Shires, J., Theodoridis, E. & Hayday, A. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    CAS  PubMed  Google Scholar 

  87. Crowley, M. P. et al. A population of murine γδ T cells that recognize an inducible MHC class IB molecule. Science 287, 314–316 (2000).

    CAS  PubMed  Google Scholar 

  88. Correa, I. et al. Most γδ T cells develop normally in β2-microglobulin-deficient mice. Proc. Natl Acad. Sci. USA 89, 653–657 (1992).

    CAS  PubMed  Google Scholar 

  89. Groh, B., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    CAS  PubMed  Google Scholar 

  90. Bauer, S. et al. Activation of NK cells and T cells by NKG2d, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    CAS  PubMed  Google Scholar 

  91. Diefenbach, A., Jamieson, A., Liu, S., Shastri, N. & Raulet, D. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    CAS  Google Scholar 

  92. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    CAS  PubMed  Google Scholar 

  93. Tsujimura, K. et al. The binding of thymus leukemia (TL) antigen tetramers to normal intestinal intraepithelial lymphocytes and thymocytes. J. Immunol. 167, 759–764 (2001).

    CAS  PubMed  Google Scholar 

  94. Spada, F. M. et al. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shiohara, T., Moriya, N., Hayakawa, J., Itohara, S. & Ishikawa, H. Resistance to cutaneous graft-vs.-host disease is not induced in T cell receptor δ gene–mutant mice. J. Exp. Med. 183, 1483–1489 (1996).

    CAS  PubMed  Google Scholar 

  96. Roberts, S. J. et al. T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc. Natl Acad. Sci. USA 93, 11774–1179 (1996).

    CAS  PubMed  Google Scholar 

  97. Fujihashi, K. et al. Regulatory function for murine intraepithelial lymphocytes. Two subsets of CD3+, T cell receptor-1+ intraepithelial lymphocyte T cells abrogate oral tolerance. J. Immunol. 145, 2010–2019 (1990).

    CAS  PubMed  Google Scholar 

  98. Ke, Y., Pearce, K., Lake, J. P., Ziegler, K. H. & Kapp, J. A. γδ T lymphocytes regulate the induction and maintenance of oral tolerance. J. Immunol. 158, 3610–3618 (1997).

    CAS  PubMed  Google Scholar 

  99. Boismenu, R. & Havran, W. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

    CAS  PubMed  Google Scholar 

  100. Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc. Natl Acad. Sci. USA 92, 6147–6151 (1995).

    CAS  PubMed  Google Scholar 

  101. Fahrer, A. et al. Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile. Proc Natl Acad. Sci. USA 98, 10261–10266 (2001).

    CAS  PubMed  Google Scholar 

  102. Ferguson, A. & Murray, D. Quantitation of intraepithelial lymphocytes in human jejunum. Gut 12, 988–994 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hayday, A. et al. Intraepithelial γ/δ + T cells in natural infection and in coeliac disease: protectos of epithelial integrity and mediators of immune regulation – a hypothesis. 6th Int. Proc. Coeliac Disease 46–57 (Oak Tree Press, Dublin, 1994).

  104. Havran, W., Chien, Y. & Allison, J. Recognition of self antigens by skin derived T cells with invariant γδ antigen receptors. Science 252, 1430–1432 (1991).

    CAS  PubMed  Google Scholar 

  105. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 10. 1126/1063916 (Science Express, 2001).

  106. Matsuda, S., Kudoh, S. & Katayama, S. Enhanced formation of Azoxymethane-induced colorectal adenocarcinoma in γ/δ T lymphocyte-deficient mice. J. Cancer Res. 92, 880–885 (2001).

    CAS  Google Scholar 

  107. Coussens, L. & Werb, Z. Inflammatory cells and cancer. Think different! J. Exp. Med. 193, 23–26 (2001).

    Google Scholar 

  108. Kilshaw, P. & Murant, S. Expression and regulation of β7 integrins on muse lymphocytes: relevance to the mucosal immune system. Eur. J. Immunol. 21, 2591–2597 (1991).

    CAS  PubMed  Google Scholar 

  109. Boismenu, R., Feng, L., Xia, Y. Y., Chang, J. C. & Havran, W. L. Chemokine expression by intraepithelial γδ T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J. Immunol. 157, 985–992 (1996).

    CAS  PubMed  Google Scholar 

  110. Young, J. D. et al. Thymosin β4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nature Med. 5, 1424–1427 (1999).

    CAS  PubMed  Google Scholar 

  111. Rief, K. & Cyster, J. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol. 164, 4720–4729 (2000).

    Google Scholar 

  112. Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 103, 745–755 (2000).

    CAS  PubMed  Google Scholar 

  113. Darlington, D. & Rogers, W. Epithelial lymphocytes in the small intestine of the mouse. J. Anat. 100, 813–830 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yamamoto, M. et al. Cytokine synthesis and apoptosis by intestinal intraepithelial lymphocytes: signaling of high-density αβ and γδ T cells via T cell receptor-CD3 complex results in interferon-γ and interleukin-5 production, while low-density T cells undergo DNA fragmentation. Eur. J. Immunol. 24, 1301–1306 (1994).

    CAS  PubMed  Google Scholar 

  115. Sydora, B. et al. Intestinal intraepithelial lymphocytes are activated and cytolytic but do not proliferate as well as other T cells in response to mitogenic signals. J. Immunol. 150, 2179–2191 (1993).

    CAS  PubMed  Google Scholar 

  116. Ohteki, T. & MacDonald, H. Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates with lineage and responsiveness. Eur. J. Immunol. 23, 1251–1255 (1993).

    CAS  PubMed  Google Scholar 

  117. Vinay, D.S. & Kwon, B.S. Role of 4–1BB in immune responses. Semin. Immunol. 10, 481–489 (1998).

    CAS  PubMed  Google Scholar 

  118. Anumanthan, A. et al. Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J. Immunol. 161, 2780–2790 (1998).

    CAS  PubMed  Google Scholar 

  119. Takahashi, C., Mittler, R. S. & Vella, A. T. Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol. 162, 5037–5040 (1999).

    CAS  PubMed  Google Scholar 

  120. Boismenu, R. & Havran, W. An innate view of γ δ T cells. Curr. Opin. Immunol. 9, 57–63 (1997).

    CAS  PubMed  Google Scholar 

  121. Tice, D. Ontogeny of NK activity in rat small bowel. Transplant. Proc. 22, 2458–2495 (1990).

    CAS  PubMed  Google Scholar 

  122. Guy-Grand, D. et al. Different use of T cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T cell differentiation. J. Exp. Med. 180, 673–679 (1994).

    CAS  PubMed  Google Scholar 

  123. Eisenbraum, M. D., Mosley, R. L., Teitelbaum, D. H. & Miller, R. A. Altered development of intestinal intraepithelial lymphocytes in P-glycoprotein deficient mice. Dev. Comp. Immun. 24, 783–795 (2000).

    Google Scholar 

  124. Puddington, L., Olson, S. & Lefrancois, L. Interations between stem cell factor and c-kit are required for intestinal immune system homeostasis. Immunity 1, 733–739 (1994).

    CAS  PubMed  Google Scholar 

  125. Page, S. T., van Oers, N. S. C., Perlmutter, R. M., Weiss, A. & Pullen, A. M. Differential contribution of lck and fyn protein tyrosine kinases to intraepithelial lymphocyte development. Eur J. Immunol 27, 554–562 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Creighton and J. Cridland for expert assistance and R. Tigelaar, J. Lewis, M. Girardi, A. Turner, P. Kilshaw and D. Oppenheim for critical discussions. Supported the Wellcome Trust, the NIH and the Dunhill Medical Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Hayday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayday, A., Theodoridis, E., Ramsburg, E. et al. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2, 997–1003 (2001). https://doi.org/10.1038/ni1101-997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1101-997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing