Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer

An Erratum to this article was published on 07 April 2015

This article has been updated

Abstract

Genetically engineered mouse models (GEMMs) have dramatically improved our understanding of tumor evolution and therapeutic resistance. However, sequential genetic manipulation of gene expression and targeting of the host is almost impossible using conventional Cre-loxP–based models. We have developed an inducible dual-recombinase system by combining flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies to improve GEMMs of pancreatic cancer. This enables investigation of multistep carcinogenesis, genetic manipulation of tumor subpopulations (such as cancer stem cells), selective targeting of the tumor microenvironment and genetic validation of therapeutic targets in autochthonous tumors on a genome-wide scale. As a proof of concept, we performed tumor cell–autonomous and nonautonomous targeting, recapitulated hallmarks of human multistep carcinogenesis, validated genetic therapy by 3-phosphoinositide-dependent protein kinase inactivation as well as cancer cell depletion and show that mast cells in the tumor microenvironment, which had been thought to be key oncogenic players, are dispensable for tumor formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pdx1-Flp–activated expression of oncogenic KrasG12D induces premalignant PanIN and PDAC.
Figure 2: Secondary genetic manipulation of established KrasG12D-induced PanIN lesions and PDAC cells in the Pdx1-Flp lineage.
Figure 3: Validation of therapeutic targets in vivo by Cre-induced time-specific Pdpk1 inactivation or DTA-mediated tumor cell depletion.
Figure 4: Mast cells are dispensable for PDAC development.
Figure 5: Applications of DRS.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

Change history

  • 31 October 2014

     In the version of this article initially published online, affiliation 12 was missing for Roland Rad, Roland M. Schmid and Dieter Saur. The list should have read: “Roland Rad1,5,12,13, Roland M Schmid1,12,13 & Dieter Saur1,12,13.” The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    PubMed  Google Scholar 

  2. Hingorani, S.R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    CAS  PubMed  Google Scholar 

  3. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11, 291–302 (2007).

    CAS  PubMed  Google Scholar 

  4. Seidler, B. et al. A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc. Natl. Acad. Sci. USA 105, 10137–10142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pylayeva-Gupta, Y., Grabocka, E. & Bar-Sagi, D. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761–774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Carrière, C., Seeley, E.S., Goetze, T., Longnecker, D.S. & Korc, M. The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc. Natl. Acad. Sci. USA 104, 4437–4442 (2007).

    PubMed  PubMed Central  Google Scholar 

  7. Habbe, N. et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. Proc. Natl. Acad. Sci. USA 105, 18913–18918 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gidekel Friedlander, S.Y. et al. Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell 16, 379–389 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Morris, J.P. IV., Wang, S.C. & Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10, 683–695 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Eser, S. et al. In vivo diagnosis of murine pancreatic intraepithelial neoplasia and early-stage pancreatic cancer by molecular imaging. Proc. Natl. Acad. Sci. USA 108, 9945–9950 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mazur, P.K. & Siveke, J.T. Genetically engineered mouse models of pancreatic cancer: unravelling tumour biology and progressing translational oncology. Gut 61, 1488–1500 (2012).

    PubMed  Google Scholar 

  12. Olive, K.P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pylayeva-Gupta, Y., Lee, K.E., Hajdu, C.H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Provenzano, P.P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gannon, M., Herrera, P.L. & Wright, C.V. Mosaic Cre-mediated recombination in pancreas using the pdx-1 enhancer/promoter. Genesis 26, 143–144 (2000).

    CAS  PubMed  Google Scholar 

  16. Hingorani, S.R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    CAS  PubMed  Google Scholar 

  17. Eser, S. et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406–420 (2013).

    CAS  PubMed  Google Scholar 

  18. Schmidt-Supprian, M. & Rajewsky, K. Vagaries of conditional gene targeting. Nat. Immunol. 8, 665–668 (2007).

    CAS  PubMed  Google Scholar 

  19. Theoharides, T.C. & Conti, P. Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol. 25, 235–241 (2004).

    CAS  PubMed  Google Scholar 

  20. Theoharides, T.C. Mast cells and pancreatic cancer. N. Engl. J. Med. 358, 1860–1861 (2008).

    CAS  PubMed  Google Scholar 

  21. Nielsen, H.J. et al. Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J. Pathol. 189, 487–495 (1999).

    CAS  PubMed  Google Scholar 

  22. Rajput, A.B. et al. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res. Treat. 107, 249–257 (2008).

    PubMed  Google Scholar 

  23. Feyerabend, T.B. et al. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35, 832–844 (2011).

    CAS  PubMed  Google Scholar 

  24. Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat. Med. 13, 1211–1218 (2007).

    CAS  PubMed  Google Scholar 

  25. Chang, D.Z. et al. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clin. Cancer Res. 17, 7015–7023 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Klein, S. et al. Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat. Commun. 4, 1630 (2013).

    PubMed  Google Scholar 

  27. Young, N.P., Crowley, D. & Jacks, T. Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res. 71, 4040–4047 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Biankin, A.V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pérez-Mancera, P.A. et al. The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486, 266–270 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Skarnes, W.C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Collins, M.A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Saborowski, M. et al. A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev. 28, 85–97 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, C.-L. et al. Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice. Dis. Model. Mech. 5, 397–402 (2012).

    CAS  PubMed  Google Scholar 

  36. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29, 418–425 (2001).

    CAS  PubMed  Google Scholar 

  37. Olive, K.P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    CAS  PubMed  Google Scholar 

  38. Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    CAS  PubMed  Google Scholar 

  39. Awatramani, R., Soriano, P., Mai, J.J. & Dymecki, S. An Flp indicator mouse expressing alkaline phosphatase from the ROSA26 locus. Nat. Genet. 29, 257–259 (2001).

    CAS  PubMed  Google Scholar 

  40. Lawlor, M.A. et al. Essential role of PDK1 in regulating cell size and development in mice. EMBO J. 21, 3728–3738 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Raymond, C.S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    PubMed  PubMed Central  Google Scholar 

  42. Ivanova, A. et al. In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A. Genesis 43, 129–135 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. von Burstin, J. et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137 361–371, 371 e361–e365 (2009).

    Google Scholar 

  44. Rad, R. et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330, 1104–1107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saur, D. et al. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 129, 1237–1250 (2005).

    CAS  PubMed  Google Scholar 

  46. Flisikowska, T. et al. A porcine model of familial adenomatous polyposis. Gastroenterology 143, 1173–1175. e1171–1177 (2012).

    CAS  PubMed  Google Scholar 

  47. Hruban, R.H. et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 66, 95–106 (2006).

    CAS  PubMed  Google Scholar 

  48. Diersch, S. et al. Efemp1 and p27(Kip1) modulate responsiveness of pancreatic cancer cells towards a dual PI3K/mTOR inhibitor in preclinical models. Oncotarget 4, 277–288 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289–300 (1995).

    Google Scholar 

  50. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Saur, D. et al. Single-nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon 1c in infantile hypertrophic pyloric stenosis. Proc. Natl. Acad. Sci. USA 101, 1662–1667 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank A. Berns (Netherlands Cancer Institute), S. Dymecki (Harvard Medical School), T. Jacks (Massachusetts Institute of Technology), L. Luo (Stanford University), J. Martinez-Barbera (University College London) and D. Tuveson (Cold Spring Harbor Laboratory) for providing transgenic animals, C. Wright (Vanderbilt University) for the mouse Pdx1 promoter construct, P. Soriano (Mount Sinai School of Medicine) for the Flp-o expression vector and the R26 targeting vector, T. Schmidt and M. Bewerunge-Hudler (DKFZ Microarray Core Facility) for mRNA analyses, and J. Götzfried, U. Götz and S. Jaeckel for technical assistance. This work was supported by funding from Deutsche Forschungsgemeinschaft (DFG SA 1374/4-1 to D.S. and SFB824, TP C9 to G.S. and D.S.), the Helmholtz Alliance Preclinical Comprehensive Cancer Center (to H.-R.R., R.R., R.M.S. and D.S.), the German Cancer Consortium (DKTK) (to R.R., R.M.S. and D.S.), the Wilhelm-Sander Foundation (2012.084.1 to G.S.), the Spanish Ministerio de Economía y Competitividad subprograma Ramón y Cajal (I.V.), the European Union (ERC Advanced Grant No.233074 to H.-R.R.), and the National Cancer Institute USA (R01 CA138265 to D.G.K. and CA155620 to A.M.L.).

Author information

Authors and Affiliations

Authors

Contributions

B.S. and D.S. designed research; N.S., B.S., K.S., C.V., C.S., M.Z., S.E., M.C.P., P.E., S.K., R.B., F.Y., A.S., I.V., R.R., G.S. and D.S., performed research; T.B.F., A.M.L., C.-L.L., E.J.M., D.G.K., A.S., D.R.A., I.V., A.B., A.K., A.E.S., H.-R.R., R.R. and R.M.S. contributed new reagents/analytic tools; N.S., B.S., K.S., C.V., C.S., M.Z., S.E., M.C.P., P.E., S.K., R.B., F.Y., I.V., R.R., G.S. and D.S. analyzed data; and B.S. and D.S. wrote the paper. N.S., B.S., K.S. and C.V. contributed equally to this manuscript.

Corresponding author

Correspondence to Dieter Saur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Table 1 and Supplementary Results (PDF 8865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schönhuber, N., Seidler, B., Schuck, K. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 20, 1340–1347 (2014). https://doi.org/10.1038/nm.3646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3646

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer