Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice

A Corrigendum to this article was published on 01 November 2002

Abstract

Respiratory distress syndrome (RDS) due to insufficient production of surfactant is a common and severe complication of preterm delivery. Here, we report that loss of the hypoxia-inducible transcription factor-2α (HIF-2α) caused fatal RDS in neonatal mice due to insufficient surfactant production by alveolar type 2 cells. VEGF, a target of HIF-2α, regulates fetal lung maturation: because VEGF levels in alveolar cells were reduced in HIF-2α-deficient fetuses; mice with a deficiency of the VEGF164 and VEGF188 isoforms or of the HIF-binding site in the VEGF promotor died of RDS; intrauterine delivery of anti-VEGF-receptor-2 antibodies caused RDS and VEGF stimulated production of surfactant proteins by cultured type 2 pneumocytes. Intrauterine delivery or postnatal intratracheal instillation of VEGF stimulated conversion of glycogen to surfactant and protected preterm mice against RDS. The pneumotrophic effect of VEGF may have therapeutic potential for lung maturation in preterm infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired lung maturation and RDS in HIF-2α−/− mice.
Figure 2: Pulmonary vascular development in HIF-2α−/− mice.
Figure 3: Pulmonary expression of HIF-2α, VEGF and its receptors.
Figure 4: VEGF treatment improves lung maturation and protects against respiratory distress.

Similar content being viewed by others

References

  1. Goldenberg, R.L., Hauth, J.C. & Andrews, W.W. Intrauterine infection and preterm delivery. N. Engl. J. Med. 342, 1500–1507 (2000).

    Article  CAS  Google Scholar 

  2. Bhakoo, O.N., Narang, A., Karthikeyan, G. & Kumar, P. Spectrum of respiratory distress in very low birthweight neonates. Indian J. Pediatr. 67, 803–804 (2000).

    Article  CAS  Google Scholar 

  3. Bourbon, J.R., Rieutort, M., Engle, M.J. & Farrell, P.M. Utilization of glycogen for phospholipid synthesis in fetal rat lung. Biochim. Biophys. Acta 712, 382–389 (1982).

    Article  CAS  Google Scholar 

  4. Kennedy, J.D. Lung function outcome in children of premature birth. J. Paediatr. Child Health 35, 516–521 (1999).

    Article  CAS  Google Scholar 

  5. Jakkula, M. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L600–607 (2000).

    Article  CAS  Google Scholar 

  6. Ferrara, N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell. Physiol. 280, C1358–1366 (2001).

    Article  CAS  Google Scholar 

  7. Healy, A.M., Morgenthau, L., Zhu, X., Farber, H.W. & Cardoso, W.V. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev. Dyn. 219, 341–352 (2000).

    Article  CAS  Google Scholar 

  8. Klekamp, J.G., Jarzecka, K. & Perkett, E.A. Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs. Am. J. Pathol. 154, 823–831 (1999).

    Article  CAS  Google Scholar 

  9. Kaner, R.J. & Crystal, R.G. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol. Med. 7, 240–246 (2001).

    Article  CAS  Google Scholar 

  10. Lassus, P. et al. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am. J. Respir. Crit. Care Med. 164, 1981–1987 (2001).

    Article  CAS  Google Scholar 

  11. Bhatt, A.J. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 164, 1971–1980 (2001).

    Article  CAS  Google Scholar 

  12. Lassus, P., Ristimaki, A., Ylikorkala, O., Viinikka, L. & Andersson, S. Vascular endothelial growth factor in human preterm lung. Am. J. Respir. Crit. Care Med. 159, 1429–1433 (1999).

    Article  CAS  Google Scholar 

  13. D'Angio, C. et al. Vascular endothelial growth factor in pulmonary lavage fluid from premature infants: Effects of age and postnatal dexamethasone. Biol. Neonate 76, 266–273 (1999).

    Article  CAS  Google Scholar 

  14. Brown, K.R., England, K.M., Goss, K.L., Snyder, J.M. & Acarregui, M.J. VEGF induces airway epithelial cell proliferation in human fetal lung in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L1001–1010 (2001).

    Article  CAS  Google Scholar 

  15. Tian, H., McKnight, S.L. & Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    Article  CAS  Google Scholar 

  16. Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 α regulates VEGF expression and is potentially involved in lung and vascular development. Proc. Natl. Acad. Sci. USA 94, 4273–4278 (1997).

    Article  CAS  Google Scholar 

  17. Flamme, I. et al. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1α and developmentally expressed in blood vessels. Mech. Dev. 63, 51–63 (1997).

    Article  CAS  Google Scholar 

  18. Brusselmans, K. et al. Hypoxia-inducible factor-2α (HIF-2α) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J. Biol. Chem. 276, 39192–39196 (2001).

    Article  CAS  Google Scholar 

  19. Botas, C. et al. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein D. Proc. Natl. Acad. Sci. USA 95, 11869–11874 (1998).

    Article  CAS  Google Scholar 

  20. Jain, S., Maltepe, E., Lu, M.M., Simon, C. & Bradfield, C.A. Expression of ARNT, ARNT2, HIF-1α, HIF-2α, and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73, 117–123 (1998).

    Article  CAS  Google Scholar 

  21. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).

    Article  CAS  Google Scholar 

  22. Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002).

    Article  CAS  Google Scholar 

  23. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001).

    Article  CAS  Google Scholar 

  24. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001).

    Article  CAS  Google Scholar 

  25. Rannels, S.R. Impaired surfactant synthesis in fetal type II lung cells from gsd/gsd rats. Exp. Lung Res. 22, 213–29 (1996).

    Article  CAS  Google Scholar 

  26. Rayani, H.H., Gewolb, I.H. & Floros, J. Glucose decreases steady state mRNA content of hydrophobic surfactant proteins B and C in fetal rat lung explants. Exp. Lung Res. 25, 69–79 (1999).

    Article  CAS  Google Scholar 

  27. Gilden, C., Sevanian, A., Tierney, D.F., Kaplan, S.A. & Barrett, C.T. Regulation of fetal lung phosphatidyl choline synthesis by cortisol: role of glycogen and glucose. Pediatr. Res. 11, 845–848 (1977).

    Article  CAS  Google Scholar 

  28. Ren, J.M., Gulve, E.A., Cartee, G.D. & Holloszy, J.O. Hypoxia causes glycogenolysis without an increase in percent phosphorylase a in rat skeletal muscle. Am. J. Physiol. 263, E1086–1091 (1992).

    CAS  PubMed  Google Scholar 

  29. Semenza, G.L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell. Biol. 13, 167–171 (2001).

    Article  CAS  Google Scholar 

  30. Yu, A.Y. et al. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am. J. Physiol. 275, L818–826 (1998).

    Article  CAS  Google Scholar 

  31. Liang, Y. et al. Activation of vascular endothelial growth factor A transcription in tumorigenic glioblastoma cell lines by an enhancer with cell-type specific DNAse 1 accessibility. J. Biol. Chem. Mar 23 (2002) online publication: http://www.jbc.org/cgi/content/abstract/M201766200v1

  32. Bernatchez, P.N., Winstead, M.V., Dennis, E.A. & Sirois, M.G. VEGF stimulation of endothelial cell PAF synthesis is mediated by group V 14 kDa secretory phospholipase A2. Br. J. Pharmacol. 134, 197–205 (2001).

    Article  CAS  Google Scholar 

  33. Bourbon, J.R., Hoffman, D.R. & Johnston, J.M. Effect of platelet-activating factor on glycogen metabolism in fetal rat lung. Exp. Lung Res. 17, 789–801 (1991).

    Article  CAS  Google Scholar 

  34. Rooney, S.A. Regulation of surfactant secretion. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129, 233–243 (2001).

    Article  CAS  Google Scholar 

  35. Pugazhenthi, S. & Khandelwal, R.L. Regulation of glycogen synthase activation in isolated hepatocytes. Mol. Cell. Biochem. 149–150, 95–101 (1995).

    Article  Google Scholar 

  36. Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. & McKnight, S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324 (1998).

    Article  CAS  Google Scholar 

  37. Peng, J., Zhang, L., Drysdale, L. & Fong, G.H. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc. Natl. Acad. Sci. USA 97, 8386–8391 (2000).

    Article  CAS  Google Scholar 

  38. Ng, Y.S., Rohan, R., Sunday, M.E., Demello, D.E. & D'Amore, P.A. Differential expression of VEGF isoforms in mouse during development and in the adult. Dev. Dyn. 220, 112–121 (2001).

    Article  CAS  Google Scholar 

  39. Corne, J. et al. IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. J. Clin. Invest. 106, 783–791 (2000).

    Article  CAS  Google Scholar 

  40. Walfisch, A., Hallak, M. & Mazor, M. Multiple courses of antenatal steroids: risks and benefits. Obstet. Gynecol. 98, 491–497 (2001).

    CAS  PubMed  Google Scholar 

  41. Bhatt, A.J., Amin, S.B., Chess, P.R., Watkins, R.H. & Maniscalco, W.M. Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung. Pediatr. Res. 47, 606–613 (2000).

    Article  CAS  Google Scholar 

  42. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  Google Scholar 

  43. Hoet, P.H., Gilissen, L. & Nemery, B. Polyanions protect against the in vitro pulmonary toxicity of polycationic paint components associated with the Ardystil syndrome. Toxicol. Appl. Pharmacol. 175, 184–190 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Verbesselt, K. Desmet, C. Van Geet and H. Devlieger for helpful discussion; and A. Bouché, M. De Mol, B. Hermans, S. Jansen, L. Kieckens, W.Y. Man, A. Manderveld, K. Maris, W. Martens, M. Nijs, S. Terclavers, A. Vandenhoeck, B. Vanwetswinkel, P. Van Wezemael and S. Wyns for technical assistance. This work was supported by an FWO-fellowship to V.C. and S.P. and by grants from the Research Fund K.U.Leuven (GOA/2001/09) and the BIOMED (#PL963380) to P.C. and D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compernolle, V., Brusselmans, K., Acker, T. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8, 702–710 (2002). https://doi.org/10.1038/nm721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing