Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness

An Erratum to this article was published on 01 March 2006

Abstract

Characterization and control of the interface structure and morphology at the atomic level is an important issue in understanding the magnetic interaction between an antiferromagnetic material and an adjacent ferromagnet in detail, because the atomic spins in an antiferromagnet change direction on the length scale of nearest atomic distances. Despite its technological importance for the development of advanced magnetic data-storage devices and extensive studies, the details of the magnetic interface coupling between antiferromagnets and ferromagnets have remained concealed. Here we present the results of magneto-optical Kerr-effect measurements and layer-resolved spectro-microscopic magnetic domain imaging of single-crystalline ferromagnet–antiferromagnet– ferromagnet trilayers. Atomic-level control of the interface morphology is achieved by systematically varying the thicknesses of the bottom ferromagnetic and the antiferromagnetic layer. We find that the magnetic coupling across the interface is mediated by step edges of single-atom height, whereas atomically flat areas do not contribute.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of the thickness of the antiferromagnetic FeMn layer tFeMn and the bottom ferromagnetic Co layer tCo on the magnetization loops of single-crystalline Co–FeMn–Co trilayers, deposited on Cu(001).
Figure 2: Influence of the atomic layer filling of the bottom Co layer on the position and the strength of the antiferromagnetic interlayer coupling maximum across a single-crystalline antiferromagnetic FeMn layer in Co–FeMn–Co trilayers on Cu(001).
Figure 3: Overview of the direction of the magnetic interlayer coupling in an FeNi–FeMn–Co single-crystalline trilayer on Cu(001).
Figure 4: Overview of the direction of the magnetic interlayer coupling in Co–Ni–FeMn–Co on Cu(001).
Figure 5: Schematic explanation of the model used to explain the observed sawtooth-like behaviour of the sign of the magnetic interlayer coupling across single-crystalline antiferromagnetic FeMn layers.

Similar content being viewed by others

References

  1. Parkin, S. S. P. et al. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J. Appl. Phys. 85, 5828–5833 (1999).

    Article  Google Scholar 

  2. Prinz, G. A. Device physics—magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  Google Scholar 

  3. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  Google Scholar 

  4. Skrumryev, V. et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003).

    Article  Google Scholar 

  5. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  6. Stamps, R. L. Mechanisms for exchange bias. J. Phys. D 33, R247–R268 (2000).

    Article  Google Scholar 

  7. Malozemoff, A. P. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679–3682 (1987).

    Article  Google Scholar 

  8. Offi, F., Kuch, W. & Kirschner, J. Structural and magnetic properties of FexMn1−x thin films on Cu(001) and on Co/Cu(001). Phys. Rev. B 66, 064419 (2002).

    Article  Google Scholar 

  9. Kuch, W., Chelaru, L. I. & Kirschner, J. Surface morphology of antiferromagnetic Fe50Mn50 layers on Cu(001). Surf. Sci. 566–568, 221–225 (2004).

    Article  Google Scholar 

  10. Offi, F. et al. Induced Fe and Mn magnetic moments in Co-FeMn bilayers on Cu(001). Phys. Rev. B 67, 094419 (2003).

    Article  Google Scholar 

  11. Kuch, W. et al. Three-dimensional noncollinear antiferromagnetic order in single-crystalline FeMn ultrathin films. Phys. Rev. Lett. 92, 017201 (2004).

    Article  Google Scholar 

  12. Liu, Z. Y. & Adenwalla, S. Oscillatory interlayer exchange coupling and its temperature dependence in [Pt/Co]3/NiO/[Co/Pt]3 multilayers with perpendicular anisotropy. Phys. Rev. Lett. 91, 037207 (2003).

    Article  Google Scholar 

  13. Kuch, W. et al. Imaging microspectroscopy of Ni/Fe/Co/Cu(001) using a photoemission microscope. J. Electron Spectrosc. Relat. Phenom. 109, 249–265 (2000).

    Article  Google Scholar 

  14. Kuch, W. et al. Magnetic interface coupling in single-crystalline Co/FeMn bilayers. Phys. Rev. B 65, 140408 (2002).

    Article  Google Scholar 

  15. Won, C. et al. Studies of FeMn/Co/Cu(001) films using photoemission electron microscopy and surface magneto-optic Kerr effect. Phys. Rev. B 71, 024406 (2005).

    Article  Google Scholar 

  16. Schmid, A. K. & Kirschner, J. In situ observation of epitaxial growth of Co thin films on Cu(100). Ultramicroscopy 42–44, 483–489 (1992).

    Article  Google Scholar 

  17. Schmid, A. K. et al. Fast interdiffusion in thin films: Scanning-tunneling-microscopy determination of surface diffusion through microscopic pinholes. Phys. Rev. B 48, 2855–2858 (1993).

    Article  Google Scholar 

  18. Umebayashi, H. & Ishikawa, Y. Antiferromagnetism ofγFe-Mn alloys. J. Phys. Soc. Jpn 21, 1281–1294 (1966).

    Article  Google Scholar 

  19. Chikazumi, S. Physics of Ferromagnetism (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  20. Sort, J. et al. Perpendicular exchange bias in antiferromagnetic–ferromagnetic nanostructures. Appl. Phys. Lett. 84, 3696–3698 (2004).

    Article  Google Scholar 

  21. Slonczewski, J. C. Fluctuation mechanism for biquadratic exchange coupling in magnetic multilayers. Phys. Rev. Lett. 67, 3172–3175 (1991).

    Article  Google Scholar 

  22. Slonczewski, J. C. Overview of interlayer exchange theory. J. Magn. Magn. Mater. 150, 13–24 (1995).

    Article  Google Scholar 

  23. Morosov, A. I. & Sigov, A. S. New type of domain walls: Domain wall caused by frustrations in multilayer magnetic nanostructures. Phys. Solid State 46, 395–410 (2004).

    Article  Google Scholar 

  24. Takano, K., Kodama, R. H., Berkowitz, A. E., Cao, W. & Thomas, G. Interfacial uncompensated antiferromagnetic spins: Role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers. Phys. Rev. Lett. 79, 1130–1133 (1997).

    Article  Google Scholar 

  25. Scholl, A. et al. Domain-size-dependent exchange bias in Co/LaFeO3 . Appl. Phys. Lett. 85, 4085–4087 (2004).

    Article  Google Scholar 

  26. Kuch, W. Layer-resolved microscopy of magnetic domains in multi-layered systems. Appl. Phys. A 76, 665–671 (2003).

    Article  Google Scholar 

  27. Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized x-rays. Science 259, 658–661 (1993).

    Google Scholar 

  28. Schneider, C. M. & Schönhense, G. Investigating surface magnetism by means of photoexcitation electron emission microscopy. Rep. Prog. Phys. 65, R1785–R1839 (2002).

    Article  Google Scholar 

  29. Kuch, W., Chelaru, L. I., Offi, F., Kotsugi, M. & Kirschner, J. Magnetic dichroisms in absorption and photoemission for magnetic characterization in x-ray photoelectron emission microscopy. J. Vac. Sci. Technol. B 20, 2543–2549 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Minister of Science and Education (BMBF) under grant no. 05 KS1EFA6. We thank B. Heinrich, J. T. Kohlhepp, and M. D. Stiles for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kuch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuch, W., Chelaru, L., Offi, F. et al. Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness. Nature Mater 5, 128–133 (2006). https://doi.org/10.1038/nmat1548

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing